{"title":"高带宽共封装光学器件液冷热管理的仿真与实验研究。","authors":"Senhan Wu, Song Wen, Huimin He, Jianyu Feng, Chuan Chen, Haiyun Xue","doi":"10.1007/s12200-025-00156-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the application of cold plate liquid cooling technology in co-packaged optics (CPO). By integrating optical modules and the switch chip on the same substrate, CPO shortens the electrical interconnection distance, effectively solving the problems of high power consumption and poor signal integrity of traditional pluggable optical modules under high bandwidth. However, the surge in power density and the thermal crosstalk resulting from high integration density make thermal management one of the key challenges that constrain the reliability of high-capacity co-packaged optics. For the unique architecture of CPO, this study analyzes its heat dissipation needs in detail, and a thermal management scheme is designed. The thermal management scheme is simulated and optimized based on the Navier-Stokes equation. The simulation results show that, in a 51.2 Tbit/s CPO system, the junction temperature of the switch chip is 97.3 °C, the maximum junction temperature of the optical modules is 31.3 °C, and the temperature difference between the optical modules is 2.4 °C to 1.2 °C. To verify the simulation results, a thermal test experimental platform is built, and the experimental results show that the temperature simulation difference is within 4% and the pressure change trend is consistent with the simulation. Combining the experimental data and simulation results, the designed heat sink can satisfy the heat dissipation demands of the 51.2 Tbit/s bandwidth CPO system. This conclusion demonstrates the potential of liquid-cooling technology in CPO, providing support for research on liquid-cooling technology in the CPO. The design provides a theoretical and practical basis for the high performance and reliability of optoelectronic integration technology in wavelength division multiplexing (WDM) systems and micro-ring device applications, contributing to the application of next-generation optical communication networks.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"11"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078904/pdf/","citationCount":"0","resultStr":"{\"title\":\"Simulation and experimental investigation of liquid-cooling thermal management for high-bandwidth co-packaged optics.\",\"authors\":\"Senhan Wu, Song Wen, Huimin He, Jianyu Feng, Chuan Chen, Haiyun Xue\",\"doi\":\"10.1007/s12200-025-00156-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study explores the application of cold plate liquid cooling technology in co-packaged optics (CPO). By integrating optical modules and the switch chip on the same substrate, CPO shortens the electrical interconnection distance, effectively solving the problems of high power consumption and poor signal integrity of traditional pluggable optical modules under high bandwidth. However, the surge in power density and the thermal crosstalk resulting from high integration density make thermal management one of the key challenges that constrain the reliability of high-capacity co-packaged optics. For the unique architecture of CPO, this study analyzes its heat dissipation needs in detail, and a thermal management scheme is designed. The thermal management scheme is simulated and optimized based on the Navier-Stokes equation. The simulation results show that, in a 51.2 Tbit/s CPO system, the junction temperature of the switch chip is 97.3 °C, the maximum junction temperature of the optical modules is 31.3 °C, and the temperature difference between the optical modules is 2.4 °C to 1.2 °C. To verify the simulation results, a thermal test experimental platform is built, and the experimental results show that the temperature simulation difference is within 4% and the pressure change trend is consistent with the simulation. Combining the experimental data and simulation results, the designed heat sink can satisfy the heat dissipation demands of the 51.2 Tbit/s bandwidth CPO system. This conclusion demonstrates the potential of liquid-cooling technology in CPO, providing support for research on liquid-cooling technology in the CPO. The design provides a theoretical and practical basis for the high performance and reliability of optoelectronic integration technology in wavelength division multiplexing (WDM) systems and micro-ring device applications, contributing to the application of next-generation optical communication networks.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"18 1\",\"pages\":\"11\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12078904/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-025-00156-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-025-00156-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Simulation and experimental investigation of liquid-cooling thermal management for high-bandwidth co-packaged optics.
This study explores the application of cold plate liquid cooling technology in co-packaged optics (CPO). By integrating optical modules and the switch chip on the same substrate, CPO shortens the electrical interconnection distance, effectively solving the problems of high power consumption and poor signal integrity of traditional pluggable optical modules under high bandwidth. However, the surge in power density and the thermal crosstalk resulting from high integration density make thermal management one of the key challenges that constrain the reliability of high-capacity co-packaged optics. For the unique architecture of CPO, this study analyzes its heat dissipation needs in detail, and a thermal management scheme is designed. The thermal management scheme is simulated and optimized based on the Navier-Stokes equation. The simulation results show that, in a 51.2 Tbit/s CPO system, the junction temperature of the switch chip is 97.3 °C, the maximum junction temperature of the optical modules is 31.3 °C, and the temperature difference between the optical modules is 2.4 °C to 1.2 °C. To verify the simulation results, a thermal test experimental platform is built, and the experimental results show that the temperature simulation difference is within 4% and the pressure change trend is consistent with the simulation. Combining the experimental data and simulation results, the designed heat sink can satisfy the heat dissipation demands of the 51.2 Tbit/s bandwidth CPO system. This conclusion demonstrates the potential of liquid-cooling technology in CPO, providing support for research on liquid-cooling technology in the CPO. The design provides a theoretical and practical basis for the high performance and reliability of optoelectronic integration technology in wavelength division multiplexing (WDM) systems and micro-ring device applications, contributing to the application of next-generation optical communication networks.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more