在癌症治疗中具有多种作用机制的免疫调节纳米平台。

Nanomedicine (London, England) Pub Date : 2025-06-01 Epub Date: 2025-05-07 DOI:10.1080/17435889.2025.2500906
Rodolfo Villa, Ya-Ping Shiau, Sohaib Mahri, Kelsey Jane Racacho, Menghuan Tang, Qiufang Zong, Donovan Ruiz, Judy Kim, Yuanpei Li
{"title":"在癌症治疗中具有多种作用机制的免疫调节纳米平台。","authors":"Rodolfo Villa, Ya-Ping Shiau, Sohaib Mahri, Kelsey Jane Racacho, Menghuan Tang, Qiufang Zong, Donovan Ruiz, Judy Kim, Yuanpei Li","doi":"10.1080/17435889.2025.2500906","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer immunotherapies have transformed oncology by utilizing the immune system to target malignancies; however, limitations in efficacy and potential side effects remain significant challenges. Nanoparticles have shown promise in enhancing drug delivery and improving immune activation, with the potential for numerous modifications to tailor them for specific environments or targets. Integrating nanoplatforms offers a promising avenue to overcome these hurdles, enhancing treatment outcomes and reducing adverse effects. By improving drug delivery, targeting, and immune modulation, nanoplatforms can unlock the full potential of cancer immunotherapy. This review explores the role of nanoplatforms in addressing these limitations and enhancing cancer immunotherapy outcomes, examining various types of nanoplatforms. Understanding the mechanisms of immunomodulation through nanoplatform deliveries is crucial. We discuss how these nanoplatforms interact with the tumor microenvironment, modulate tumor-associated macrophages and regulatory T cells, activate immune cells directly, enhance antigen presentation, and promote immunological memory. Further benefits include combination approaches integrating nanoplatforms with chemotherapy, radiotherapy, and phototherapy. Immunotherapy is a relatively new approach, but numerous clinical studies already utilize nanoplatform-based immunotherapies with promising results. This review aims to provide insights into the potential of nanoplatforms to enhance cancer immunotherapy and pave the way for more effective and personalized treatment strategies.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"1321-1338"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140459/pdf/","citationCount":"0","resultStr":"{\"title\":\"Immunomodulatory nanoplatforms with multiple mechanisms of action in cancer treatment.\",\"authors\":\"Rodolfo Villa, Ya-Ping Shiau, Sohaib Mahri, Kelsey Jane Racacho, Menghuan Tang, Qiufang Zong, Donovan Ruiz, Judy Kim, Yuanpei Li\",\"doi\":\"10.1080/17435889.2025.2500906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer immunotherapies have transformed oncology by utilizing the immune system to target malignancies; however, limitations in efficacy and potential side effects remain significant challenges. Nanoparticles have shown promise in enhancing drug delivery and improving immune activation, with the potential for numerous modifications to tailor them for specific environments or targets. Integrating nanoplatforms offers a promising avenue to overcome these hurdles, enhancing treatment outcomes and reducing adverse effects. By improving drug delivery, targeting, and immune modulation, nanoplatforms can unlock the full potential of cancer immunotherapy. This review explores the role of nanoplatforms in addressing these limitations and enhancing cancer immunotherapy outcomes, examining various types of nanoplatforms. Understanding the mechanisms of immunomodulation through nanoplatform deliveries is crucial. We discuss how these nanoplatforms interact with the tumor microenvironment, modulate tumor-associated macrophages and regulatory T cells, activate immune cells directly, enhance antigen presentation, and promote immunological memory. Further benefits include combination approaches integrating nanoplatforms with chemotherapy, radiotherapy, and phototherapy. Immunotherapy is a relatively new approach, but numerous clinical studies already utilize nanoplatform-based immunotherapies with promising results. This review aims to provide insights into the potential of nanoplatforms to enhance cancer immunotherapy and pave the way for more effective and personalized treatment strategies.</p>\",\"PeriodicalId\":74240,\"journal\":{\"name\":\"Nanomedicine (London, England)\",\"volume\":\" \",\"pages\":\"1321-1338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine (London, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17435889.2025.2500906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2500906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过利用免疫系统靶向恶性肿瘤,癌症免疫疗法已经改变了肿瘤学;然而,有效性和潜在副作用的局限性仍然是重大挑战。纳米颗粒在增强药物传递和改善免疫激活方面表现出了希望,具有许多修改的潜力,可以针对特定的环境或目标进行定制。整合纳米平台为克服这些障碍、提高治疗效果和减少不良反应提供了一条有希望的途径。通过改善药物传递、靶向和免疫调节,纳米平台可以释放癌症免疫治疗的全部潜力。这篇综述探讨了纳米平台在解决这些局限性和提高癌症免疫治疗效果方面的作用,研究了各种类型的纳米平台。了解通过纳米平台递送的免疫调节机制至关重要。我们讨论了这些纳米平台如何与肿瘤微环境相互作用,调节肿瘤相关巨噬细胞和调节性T细胞,直接激活免疫细胞,增强抗原呈递,促进免疫记忆。进一步的好处包括将纳米平台与化疗、放疗和光疗相结合。免疫疗法是一种相对较新的方法,但许多临床研究已经利用基于纳米平台的免疫疗法取得了有希望的结果。本综述旨在深入了解纳米平台在增强癌症免疫治疗方面的潜力,并为更有效和个性化的治疗策略铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Immunomodulatory nanoplatforms with multiple mechanisms of action in cancer treatment.

Cancer immunotherapies have transformed oncology by utilizing the immune system to target malignancies; however, limitations in efficacy and potential side effects remain significant challenges. Nanoparticles have shown promise in enhancing drug delivery and improving immune activation, with the potential for numerous modifications to tailor them for specific environments or targets. Integrating nanoplatforms offers a promising avenue to overcome these hurdles, enhancing treatment outcomes and reducing adverse effects. By improving drug delivery, targeting, and immune modulation, nanoplatforms can unlock the full potential of cancer immunotherapy. This review explores the role of nanoplatforms in addressing these limitations and enhancing cancer immunotherapy outcomes, examining various types of nanoplatforms. Understanding the mechanisms of immunomodulation through nanoplatform deliveries is crucial. We discuss how these nanoplatforms interact with the tumor microenvironment, modulate tumor-associated macrophages and regulatory T cells, activate immune cells directly, enhance antigen presentation, and promote immunological memory. Further benefits include combination approaches integrating nanoplatforms with chemotherapy, radiotherapy, and phototherapy. Immunotherapy is a relatively new approach, but numerous clinical studies already utilize nanoplatform-based immunotherapies with promising results. This review aims to provide insights into the potential of nanoplatforms to enhance cancer immunotherapy and pave the way for more effective and personalized treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信