激活腺苷信号促进老年骨折愈合。

IF 6.4 1区 医学 Q1 CELL & TISSUE ENGINEERING
Hunter Newman, Yu-Ru V Shih, Jiaul Hoque, Yuze Zeng, Naveen R Natesh, Gavin Gonzales, Wendi Guo, Vijitha Puviindran, Colleen Wu, Benjamin A Alman, Shyni Varghese
{"title":"激活腺苷信号促进老年骨折愈合。","authors":"Hunter Newman, Yu-Ru V Shih, Jiaul Hoque, Yuze Zeng, Naveen R Natesh, Gavin Gonzales, Wendi Guo, Vijitha Puviindran, Colleen Wu, Benjamin A Alman, Shyni Varghese","doi":"10.1038/s41536-025-00406-1","DOIUrl":null,"url":null,"abstract":"<p><p>Bone fractures and related complications are a significant concern for older adults, particularly with the growing aging population. Therapeutic interventions that promote bone tissue regeneration are attractive for geriatric fracture repair. Extracellular adenosine plays a key role in bone homeostasis and regeneration. Herein, we examined the changes in extracellular adenosine with aging and the potential of local delivery of adenosine to promote fracture healing using aged mice. Extracellular adenosine level was found to be significantly lower in aged bone tissue compared to young mice. Concomitantly, the ecto-5'-nucleotidase CD73 expression was also lower in aged bone. Local delivery of adenosine using injectable, in situ curing microgel delivery units yielded a pro-regenerative environment and promoted fracture healing in aged mice. This study offers new insights into age-related physiological changes in adenosine levels and demonstrates the therapeutic potential of adenosine supplementation to circumvent the compromised healing of geriatric fractures.</p>","PeriodicalId":54236,"journal":{"name":"npj Regenerative Medicine","volume":"10 1","pages":"18"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982386/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enabling adenosine signaling to promote aged fracture healing.\",\"authors\":\"Hunter Newman, Yu-Ru V Shih, Jiaul Hoque, Yuze Zeng, Naveen R Natesh, Gavin Gonzales, Wendi Guo, Vijitha Puviindran, Colleen Wu, Benjamin A Alman, Shyni Varghese\",\"doi\":\"10.1038/s41536-025-00406-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone fractures and related complications are a significant concern for older adults, particularly with the growing aging population. Therapeutic interventions that promote bone tissue regeneration are attractive for geriatric fracture repair. Extracellular adenosine plays a key role in bone homeostasis and regeneration. Herein, we examined the changes in extracellular adenosine with aging and the potential of local delivery of adenosine to promote fracture healing using aged mice. Extracellular adenosine level was found to be significantly lower in aged bone tissue compared to young mice. Concomitantly, the ecto-5'-nucleotidase CD73 expression was also lower in aged bone. Local delivery of adenosine using injectable, in situ curing microgel delivery units yielded a pro-regenerative environment and promoted fracture healing in aged mice. This study offers new insights into age-related physiological changes in adenosine levels and demonstrates the therapeutic potential of adenosine supplementation to circumvent the compromised healing of geriatric fractures.</p>\",\"PeriodicalId\":54236,\"journal\":{\"name\":\"npj Regenerative Medicine\",\"volume\":\"10 1\",\"pages\":\"18\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982386/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Regenerative Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41536-025-00406-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Regenerative Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41536-025-00406-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

骨折及相关并发症是老年人的一个重要问题,特别是随着人口老龄化的加剧。促进骨组织再生的治疗干预对老年骨折修复具有吸引力。细胞外腺苷在骨稳态和再生中起关键作用。在此,我们研究了细胞外腺苷随衰老的变化,以及局部递送腺苷促进老年小鼠骨折愈合的潜力。与年轻小鼠相比,衰老小鼠骨组织中的细胞外腺苷水平明显降低。同时,外5′-核苷酸酶CD73在衰老骨中的表达也较低。使用可注射的原位固化微凝胶给药单元局部递送腺苷,可产生促进再生的环境,促进老年小鼠骨折愈合。这项研究为年龄相关的腺苷水平的生理变化提供了新的见解,并证明了补充腺苷以避免老年骨折愈合受损的治疗潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling adenosine signaling to promote aged fracture healing.

Bone fractures and related complications are a significant concern for older adults, particularly with the growing aging population. Therapeutic interventions that promote bone tissue regeneration are attractive for geriatric fracture repair. Extracellular adenosine plays a key role in bone homeostasis and regeneration. Herein, we examined the changes in extracellular adenosine with aging and the potential of local delivery of adenosine to promote fracture healing using aged mice. Extracellular adenosine level was found to be significantly lower in aged bone tissue compared to young mice. Concomitantly, the ecto-5'-nucleotidase CD73 expression was also lower in aged bone. Local delivery of adenosine using injectable, in situ curing microgel delivery units yielded a pro-regenerative environment and promoted fracture healing in aged mice. This study offers new insights into age-related physiological changes in adenosine levels and demonstrates the therapeutic potential of adenosine supplementation to circumvent the compromised healing of geriatric fractures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Regenerative Medicine
npj Regenerative Medicine Engineering-Biomedical Engineering
CiteScore
10.00
自引率
1.40%
发文量
71
审稿时长
12 weeks
期刊介绍: Regenerative Medicine, an innovative online-only journal, aims to advance research in the field of repairing and regenerating damaged tissues and organs within the human body. As a part of the prestigious Nature Partner Journals series and in partnership with ARMI, this high-quality, open access journal serves as a platform for scientists to explore effective therapies that harness the body's natural regenerative capabilities. With a focus on understanding the fundamental mechanisms of tissue damage and regeneration, npj Regenerative Medicine actively encourages studies that bridge the gap between basic research and clinical tissue repair strategies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信