多电极阵列增强hiPSC-CM异质组织心脏药物检测的硅模拟。

IF 4.7 2区 医学 Q1 NEUROSCIENCES
Sofia Botti, Rolf Krause, Luca F Pavarino
{"title":"多电极阵列增强hiPSC-CM异质组织心脏药物检测的硅模拟。","authors":"Sofia Botti, Rolf Krause, Luca F Pavarino","doi":"10.1113/JP287276","DOIUrl":null,"url":null,"abstract":"<p><p>Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. By integrating standard experimental techniques with extracellular potential measurements from multi-electrode arrays (MEAs), researchers can capture key tissue-level electrophysiological properties, such as action potential dynamics and conduction characteristics. This study presents an innovative computational framework that combines an MEA-based electrophysiological model with phenotype-specific hiPSC-CM ionic models, enabling accurate in silico predictions of drug responses. We tested four drug compounds and ion channel blockers using this model and compared these predictions against experimental MEA data, establishing the model's robustness and reliability. Additionally, we examined how tissue heterogeneity in hiPSC-CMs affects conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Our model was further tested through simulations of Brugada syndrome, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues. These findings highlight the potential of hiPSC-CM MEA-based in silico modelling for advancing drug screening processes, which have the potential to refine disease-specific therapy development, and improve patient outcomes in complex cardiac conditions. KEY POINTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. Development of an innovative computational framework that combines a multi-electrode array (MEA)-based electrophysiological model with phenotype-specific hiPSC-CM ionic models. Drug testing of four compounds and ion channel blockers using this hiPSC-CM MEA model and comparison against experimental MEA data, establishing the model's robustness and reliability. Study of the effect of tissue heterogeneity in hiPSC-CMs on conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Brugada syndrome simulation through the hiPSC-CM MEA model, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico modelling of multi-electrode arrays for enhancing cardiac drug testing on hiPSC-CM heterogeneous tissues.\",\"authors\":\"Sofia Botti, Rolf Krause, Luca F Pavarino\",\"doi\":\"10.1113/JP287276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. By integrating standard experimental techniques with extracellular potential measurements from multi-electrode arrays (MEAs), researchers can capture key tissue-level electrophysiological properties, such as action potential dynamics and conduction characteristics. This study presents an innovative computational framework that combines an MEA-based electrophysiological model with phenotype-specific hiPSC-CM ionic models, enabling accurate in silico predictions of drug responses. We tested four drug compounds and ion channel blockers using this model and compared these predictions against experimental MEA data, establishing the model's robustness and reliability. Additionally, we examined how tissue heterogeneity in hiPSC-CMs affects conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Our model was further tested through simulations of Brugada syndrome, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues. These findings highlight the potential of hiPSC-CM MEA-based in silico modelling for advancing drug screening processes, which have the potential to refine disease-specific therapy development, and improve patient outcomes in complex cardiac conditions. KEY POINTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. Development of an innovative computational framework that combines a multi-electrode array (MEA)-based electrophysiological model with phenotype-specific hiPSC-CM ionic models. Drug testing of four compounds and ion channel blockers using this hiPSC-CM MEA model and comparison against experimental MEA data, establishing the model's robustness and reliability. Study of the effect of tissue heterogeneity in hiPSC-CMs on conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Brugada syndrome simulation through the hiPSC-CM MEA model, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues.</p>\",\"PeriodicalId\":50088,\"journal\":{\"name\":\"Journal of Physiology-London\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physiology-London\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1113/JP287276\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP287276","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类诱导的多能干细胞衍生心肌细胞(hiPSC-CMs)为患者特异性药物的体外和计算机测试提供了一个变革平台,使心脏电生理的详细研究成为可能。通过将标准实验技术与多电极阵列(MEAs)的细胞外电位测量相结合,研究人员可以捕获关键的组织水平电生理特性,如动作电位动力学和传导特性。本研究提出了一种创新的计算框架,将基于mea的电生理模型与表型特异性hiPSC-CM离子模型相结合,实现了对药物反应的精确计算机预测。我们使用该模型测试了四种药物化合物和离子通道阻滞剂,并将这些预测结果与实验MEA数据进行了比较,建立了模型的稳健性和可靠性。此外,我们研究了hiPSC-CMs中的组织异质性如何影响传导速度,从而深入了解细胞变异如何影响药物疗效和组织水平的电行为。我们的模型通过模拟Brugada综合征进行了进一步的测试,成功地复制了成人心脏组织中观察到的病理电生理模式。这些发现强调了基于hiPSC-CM mea的计算机建模在推进药物筛选过程中的潜力,这有可能改进疾病特异性治疗的开发,并改善复杂心脏病患者的预后。人类诱导的多能干细胞衍生的心肌细胞(hiPSC-CMs)为患者特异性药物的体外和计算机测试提供了一个变革的平台,使心脏电生理的详细研究成为可能。开发了一种创新的计算框架,将基于多电极阵列(MEA)的电生理模型与表型特异性hiPSC-CM离子模型相结合。利用该hiPSC-CM MEA模型对四种化合物和离子通道阻断剂进行药物测试,并与实验MEA数据进行比较,建立模型的鲁棒性和可靠性。研究hiPSC-CMs中组织异质性对传导速度的影响,为细胞变异如何影响药物疗效和组织水平电行为提供见解。通过hiPSC-CM MEA模型模拟Brugada综合征,成功复制成人心脏组织中观察到的病理电生理模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In silico modelling of multi-electrode arrays for enhancing cardiac drug testing on hiPSC-CM heterogeneous tissues.

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. By integrating standard experimental techniques with extracellular potential measurements from multi-electrode arrays (MEAs), researchers can capture key tissue-level electrophysiological properties, such as action potential dynamics and conduction characteristics. This study presents an innovative computational framework that combines an MEA-based electrophysiological model with phenotype-specific hiPSC-CM ionic models, enabling accurate in silico predictions of drug responses. We tested four drug compounds and ion channel blockers using this model and compared these predictions against experimental MEA data, establishing the model's robustness and reliability. Additionally, we examined how tissue heterogeneity in hiPSC-CMs affects conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Our model was further tested through simulations of Brugada syndrome, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues. These findings highlight the potential of hiPSC-CM MEA-based in silico modelling for advancing drug screening processes, which have the potential to refine disease-specific therapy development, and improve patient outcomes in complex cardiac conditions. KEY POINTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) offer a transformative platform for in vitro and in silico testing of patient-specific drugs, enabling detailed study of cardiac electrophysiology. Development of an innovative computational framework that combines a multi-electrode array (MEA)-based electrophysiological model with phenotype-specific hiPSC-CM ionic models. Drug testing of four compounds and ion channel blockers using this hiPSC-CM MEA model and comparison against experimental MEA data, establishing the model's robustness and reliability. Study of the effect of tissue heterogeneity in hiPSC-CMs on conduction velocity, providing insights into how cellular variations can influence drug efficacy and tissue-level electrical behaviour. Brugada syndrome simulation through the hiPSC-CM MEA model, successfully replicating pathological electrophysiological patterns observed in adult cardiac tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physiology-London
Journal of Physiology-London 医学-神经科学
CiteScore
9.70
自引率
7.30%
发文量
817
审稿时长
2 months
期刊介绍: The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew. The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信