{"title":"迈向自动化和可解释的单细胞高通量扰动分析。","authors":"Jesus Gonzalez-Ferrer, Mohammed A Mostajo-Radji","doi":"10.1016/j.patter.2025.101228","DOIUrl":null,"url":null,"abstract":"<p><p>Perturbation analysis in single-cell RNA sequencing (scRNA-seq) data is challenging due to the complexity of cellular responses. To address this, Xu and Fleming et al. developed CellCap, a generative deep-learning model that decodes the perturbation effect on a particular cell state. CellCap extracts interpretable latent representations of perturbation response modules, identifying key cellular pathways activated under various conditions. This allows for a deeper understanding of cell-state-specific responses to genetic, chemical, or biological perturbations.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 4","pages":"101228"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010446/pdf/","citationCount":"0","resultStr":"{\"title\":\"Toward automated and explainable high-throughput perturbation analysis in single cells.\",\"authors\":\"Jesus Gonzalez-Ferrer, Mohammed A Mostajo-Radji\",\"doi\":\"10.1016/j.patter.2025.101228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perturbation analysis in single-cell RNA sequencing (scRNA-seq) data is challenging due to the complexity of cellular responses. To address this, Xu and Fleming et al. developed CellCap, a generative deep-learning model that decodes the perturbation effect on a particular cell state. CellCap extracts interpretable latent representations of perturbation response modules, identifying key cellular pathways activated under various conditions. This allows for a deeper understanding of cell-state-specific responses to genetic, chemical, or biological perturbations.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 4\",\"pages\":\"101228\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010446/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2025.101228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Toward automated and explainable high-throughput perturbation analysis in single cells.
Perturbation analysis in single-cell RNA sequencing (scRNA-seq) data is challenging due to the complexity of cellular responses. To address this, Xu and Fleming et al. developed CellCap, a generative deep-learning model that decodes the perturbation effect on a particular cell state. CellCap extracts interpretable latent representations of perturbation response modules, identifying key cellular pathways activated under various conditions. This allows for a deeper understanding of cell-state-specific responses to genetic, chemical, or biological perturbations.