过分散数据连续Muth分布的一种新的离散模拟:性质、估计技术和应用。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-04-10 DOI:10.3390/e27040409
Howaida Elsayed, Mohamed Hussein
{"title":"过分散数据连续Muth分布的一种新的离散模拟:性质、估计技术和应用。","authors":"Howaida Elsayed, Mohamed Hussein","doi":"10.3390/e27040409","DOIUrl":null,"url":null,"abstract":"<p><p>We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025837/pdf/","citationCount":"0","resultStr":"{\"title\":\"A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application.\",\"authors\":\"Howaida Elsayed, Mohamed Hussein\",\"doi\":\"10.3390/e27040409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040409\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040409","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的单参数离散Muth (DsMuth)分布,这是一种灵活的概率质量函数,专为计数数据建模,特别是过度分散的数据。该分布是通过生存离散化方法得到的。研究了几种提出的分布特征和可靠性度量,包括均值、方差、偏度、峰度、概率生成函数、矩、矩生成函数、平均剩余寿命、分位数函数和熵。不同的估计方法,包括最大似然,矩和比例,探索识别未知的分布参数。通过不同参数设置和样本量下的仿真,评估了这些估计器的性能。此外,与其他可用的离散概率分布相比,使用真实数据集来强调所提出分布的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application.

We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信