{"title":"过分散数据连续Muth分布的一种新的离散模拟:性质、估计技术和应用。","authors":"Howaida Elsayed, Mohamed Hussein","doi":"10.3390/e27040409","DOIUrl":null,"url":null,"abstract":"<p><p>We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025837/pdf/","citationCount":"0","resultStr":"{\"title\":\"A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application.\",\"authors\":\"Howaida Elsayed, Mohamed Hussein\",\"doi\":\"10.3390/e27040409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27040409\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040409","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application.
We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.