{"title":"应用深度卷积神经网络预测超声图像微波消融良性甲状腺结节的疗效。","authors":"Enock Adjei Agyekum, Yu-Guo Wang, Eliasu Issaka, Yong-Zhen Ren, Gongxun Tan, Xiangjun Shen, Xiao-Qin Qian","doi":"10.1186/s12911-025-02989-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Thyroid nodules are frequent in clinical settings, and their diagnosis in adults is growing, with some persons experiencing symptoms. Ultrasound-guided thermal ablation can shrink nodules and alleviate discomfort. Because the degree and rate of lesion absorption vary greatly between individuals, there is no reliable model for predicting the therapeutic efficacy of thermal ablation.</p><p><strong>Methods: </strong>Five convolutional neural network models including VGG19, Resnet 50, EfficientNetB1, EfficientNetB0, and InceptionV3, pre-trained with ImageNet, were compared for predicting the efficacy of ultrasound-guided microwave ablation (MWA) for benign thyroid nodules using ultrasound data. The patients were randomly assigned to one of two data sets: training (70%) or validation (30%). Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve (AUC) were all used to assess predictive performance.</p><p><strong>Results: </strong>In the validation set, fine-tuned EfficientNetB1 performed best, with an AUC of 0.85 and an ACC of 0.79.</p><p><strong>Conclusions: </strong>The study found that our deep learning model accurately predicts nodules with VRR < 50% after a single MWA session. Indeed, when thermal therapies compete with surgery, anticipating which nodules will be poor responders provides useful information that may assist physicians and patients determine whether thermal ablation or surgery is the preferable option. This was a preliminary study of deep learning, with a gap in actual clinical applications. As a result, more in-depth study should be undertaken to develop deep-learning models that can better help clinics. Prospective studies are expected to generate high-quality evidence and improve clinical performance in subsequent research.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"161"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987319/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the efficacy of microwave ablation of benign thyroid nodules from ultrasound images using deep convolutional neural networks.\",\"authors\":\"Enock Adjei Agyekum, Yu-Guo Wang, Eliasu Issaka, Yong-Zhen Ren, Gongxun Tan, Xiangjun Shen, Xiao-Qin Qian\",\"doi\":\"10.1186/s12911-025-02989-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Thyroid nodules are frequent in clinical settings, and their diagnosis in adults is growing, with some persons experiencing symptoms. Ultrasound-guided thermal ablation can shrink nodules and alleviate discomfort. Because the degree and rate of lesion absorption vary greatly between individuals, there is no reliable model for predicting the therapeutic efficacy of thermal ablation.</p><p><strong>Methods: </strong>Five convolutional neural network models including VGG19, Resnet 50, EfficientNetB1, EfficientNetB0, and InceptionV3, pre-trained with ImageNet, were compared for predicting the efficacy of ultrasound-guided microwave ablation (MWA) for benign thyroid nodules using ultrasound data. The patients were randomly assigned to one of two data sets: training (70%) or validation (30%). Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve (AUC) were all used to assess predictive performance.</p><p><strong>Results: </strong>In the validation set, fine-tuned EfficientNetB1 performed best, with an AUC of 0.85 and an ACC of 0.79.</p><p><strong>Conclusions: </strong>The study found that our deep learning model accurately predicts nodules with VRR < 50% after a single MWA session. Indeed, when thermal therapies compete with surgery, anticipating which nodules will be poor responders provides useful information that may assist physicians and patients determine whether thermal ablation or surgery is the preferable option. This was a preliminary study of deep learning, with a gap in actual clinical applications. As a result, more in-depth study should be undertaken to develop deep-learning models that can better help clinics. Prospective studies are expected to generate high-quality evidence and improve clinical performance in subsequent research.</p>\",\"PeriodicalId\":9340,\"journal\":{\"name\":\"BMC Medical Informatics and Decision Making\",\"volume\":\"25 1\",\"pages\":\"161\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11987319/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Informatics and Decision Making\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12911-025-02989-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02989-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Predicting the efficacy of microwave ablation of benign thyroid nodules from ultrasound images using deep convolutional neural networks.
Background: Thyroid nodules are frequent in clinical settings, and their diagnosis in adults is growing, with some persons experiencing symptoms. Ultrasound-guided thermal ablation can shrink nodules and alleviate discomfort. Because the degree and rate of lesion absorption vary greatly between individuals, there is no reliable model for predicting the therapeutic efficacy of thermal ablation.
Methods: Five convolutional neural network models including VGG19, Resnet 50, EfficientNetB1, EfficientNetB0, and InceptionV3, pre-trained with ImageNet, were compared for predicting the efficacy of ultrasound-guided microwave ablation (MWA) for benign thyroid nodules using ultrasound data. The patients were randomly assigned to one of two data sets: training (70%) or validation (30%). Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve (AUC) were all used to assess predictive performance.
Results: In the validation set, fine-tuned EfficientNetB1 performed best, with an AUC of 0.85 and an ACC of 0.79.
Conclusions: The study found that our deep learning model accurately predicts nodules with VRR < 50% after a single MWA session. Indeed, when thermal therapies compete with surgery, anticipating which nodules will be poor responders provides useful information that may assist physicians and patients determine whether thermal ablation or surgery is the preferable option. This was a preliminary study of deep learning, with a gap in actual clinical applications. As a result, more in-depth study should be undertaken to develop deep-learning models that can better help clinics. Prospective studies are expected to generate high-quality evidence and improve clinical performance in subsequent research.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.