K Adolphus, P Van den Abbeele, J Poppe, S Deyaert, A Baudot, I Laurie, K Karnik, D Risso
{"title":"d-Allulose和赤藓糖醇可增加健康成人和2型糖尿病患者体内丁酸盐的生成并影响肠道微生物群。","authors":"K Adolphus, P Van den Abbeele, J Poppe, S Deyaert, A Baudot, I Laurie, K Karnik, D Risso","doi":"10.1163/18762891-bja00071","DOIUrl":null,"url":null,"abstract":"<p><p>Type-2 diabetes mellitus (T2DM) is associated with a reduction of butyrate-producing gut bacteria. d-allulose and erythritol are low-no-calorie sweeteners (LNCS) used as sugar substitutes to reduce high free sugar intakes associated with non-communicable diseases, including T2DM. This is the first study to investigate the impact of representative and physiologically relevant doses of d-allulose and erythritol on the human gut microbiota of T2DM ( n = 6) and co-living healthy adults ( n = 6). Using the clinically predictive ex vivo SIFR® technology, d-allulose and erythritol were shown to significantly increase butyrate production 24-48 h after treatment and significantly increased the abundance of particular microbial families or species in both healthy individuals and those with T2DM compared to the no-substrate control (NSC). d-Allulose significantly increased the abundance of Anaerostipes hadrus and Lachnospiraceae_unclassified_species ( u _ s) at 48 h in healthy adults and adults with T2DM compared to the NSC. Erythritol significantly increased the abundance of Eubacteriaceae and Barnesiellaceae families at 48 h in healthy adults and adults with T2DM but had no significant effects on microbial species compared to the NSC. d-Allulose resulted in a larger increase in butyrate between 6-24 h whereas erythritol resulted in a larger increased butyrate between 24-48 h. The findings suggest prebiotic potential of d-allulose and erythritol worth of investigation in human clinical trials, as blending d-allulose and erythritol could be a promising strategy to reduce free sugar intakes and increase butyrate production in both healthy and T2DM individuals, resulting in beneficial effects on glycemic control.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-19"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"d-Allulose and erythritol increase butyrate production and impact the gut microbiota in healthy adults and adults with type-2 diabetes ex vivo.\",\"authors\":\"K Adolphus, P Van den Abbeele, J Poppe, S Deyaert, A Baudot, I Laurie, K Karnik, D Risso\",\"doi\":\"10.1163/18762891-bja00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type-2 diabetes mellitus (T2DM) is associated with a reduction of butyrate-producing gut bacteria. d-allulose and erythritol are low-no-calorie sweeteners (LNCS) used as sugar substitutes to reduce high free sugar intakes associated with non-communicable diseases, including T2DM. This is the first study to investigate the impact of representative and physiologically relevant doses of d-allulose and erythritol on the human gut microbiota of T2DM ( n = 6) and co-living healthy adults ( n = 6). Using the clinically predictive ex vivo SIFR® technology, d-allulose and erythritol were shown to significantly increase butyrate production 24-48 h after treatment and significantly increased the abundance of particular microbial families or species in both healthy individuals and those with T2DM compared to the no-substrate control (NSC). d-Allulose significantly increased the abundance of Anaerostipes hadrus and Lachnospiraceae_unclassified_species ( u _ s) at 48 h in healthy adults and adults with T2DM compared to the NSC. Erythritol significantly increased the abundance of Eubacteriaceae and Barnesiellaceae families at 48 h in healthy adults and adults with T2DM but had no significant effects on microbial species compared to the NSC. d-Allulose resulted in a larger increase in butyrate between 6-24 h whereas erythritol resulted in a larger increased butyrate between 24-48 h. The findings suggest prebiotic potential of d-allulose and erythritol worth of investigation in human clinical trials, as blending d-allulose and erythritol could be a promising strategy to reduce free sugar intakes and increase butyrate production in both healthy and T2DM individuals, resulting in beneficial effects on glycemic control.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00071\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00071","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
d-Allulose and erythritol increase butyrate production and impact the gut microbiota in healthy adults and adults with type-2 diabetes ex vivo.
Type-2 diabetes mellitus (T2DM) is associated with a reduction of butyrate-producing gut bacteria. d-allulose and erythritol are low-no-calorie sweeteners (LNCS) used as sugar substitutes to reduce high free sugar intakes associated with non-communicable diseases, including T2DM. This is the first study to investigate the impact of representative and physiologically relevant doses of d-allulose and erythritol on the human gut microbiota of T2DM ( n = 6) and co-living healthy adults ( n = 6). Using the clinically predictive ex vivo SIFR® technology, d-allulose and erythritol were shown to significantly increase butyrate production 24-48 h after treatment and significantly increased the abundance of particular microbial families or species in both healthy individuals and those with T2DM compared to the no-substrate control (NSC). d-Allulose significantly increased the abundance of Anaerostipes hadrus and Lachnospiraceae_unclassified_species ( u _ s) at 48 h in healthy adults and adults with T2DM compared to the NSC. Erythritol significantly increased the abundance of Eubacteriaceae and Barnesiellaceae families at 48 h in healthy adults and adults with T2DM but had no significant effects on microbial species compared to the NSC. d-Allulose resulted in a larger increase in butyrate between 6-24 h whereas erythritol resulted in a larger increased butyrate between 24-48 h. The findings suggest prebiotic potential of d-allulose and erythritol worth of investigation in human clinical trials, as blending d-allulose and erythritol could be a promising strategy to reduce free sugar intakes and increase butyrate production in both healthy and T2DM individuals, resulting in beneficial effects on glycemic control.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits