{"title":"基于新兴纳米材料的可穿戴生物电子设备,用于远程医疗应用。","authors":"Yichong Ren, Feng Zhang, Zheng Yan, Pai-Yen Chen","doi":"10.1016/j.device.2024.100676","DOIUrl":null,"url":null,"abstract":"<p><p>Nanomaterial-driven, soft wearable bioelectronics are transforming telemedicine by offering skin comfort, biocompatibility, and the capability for continuous remote monitoring of physiological signals. The devices, enabled by advanced zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanomaterials, have achieved new levels in electrical stability and reliability, allowing them to perform effectively even under dynamic physical conditions. Despite their promise, significant challenges remain in the fabrication, integration, and practical deployment of nanoscale materials and devices. Critical challenges include ensuring the durability and stability of nanomaterial-based bioelectronics for extended wear and developing efficient integration strategies to support multifunctional sensing modalities. Telemedicine has revolutionized healthcare by enabling remote health monitoring. The integration of nanomaterials within wearable devices is a central factor driving this breakthrough, as these materials enhance sensor sensitivity, durability, and multifunctionality. These wearable sensors leverage various operating principles tailored to specific applications, such as intraocular pressure monitoring, electrophysiological signal recording, and biochemical marker tracking.</p>","PeriodicalId":101324,"journal":{"name":"Device","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981230/pdf/","citationCount":"0","resultStr":"{\"title\":\"Wearable bioelectronics based on emerging nanomaterials for telehealth applications.\",\"authors\":\"Yichong Ren, Feng Zhang, Zheng Yan, Pai-Yen Chen\",\"doi\":\"10.1016/j.device.2024.100676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanomaterial-driven, soft wearable bioelectronics are transforming telemedicine by offering skin comfort, biocompatibility, and the capability for continuous remote monitoring of physiological signals. The devices, enabled by advanced zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanomaterials, have achieved new levels in electrical stability and reliability, allowing them to perform effectively even under dynamic physical conditions. Despite their promise, significant challenges remain in the fabrication, integration, and practical deployment of nanoscale materials and devices. Critical challenges include ensuring the durability and stability of nanomaterial-based bioelectronics for extended wear and developing efficient integration strategies to support multifunctional sensing modalities. Telemedicine has revolutionized healthcare by enabling remote health monitoring. The integration of nanomaterials within wearable devices is a central factor driving this breakthrough, as these materials enhance sensor sensitivity, durability, and multifunctionality. These wearable sensors leverage various operating principles tailored to specific applications, such as intraocular pressure monitoring, electrophysiological signal recording, and biochemical marker tracking.</p>\",\"PeriodicalId\":101324,\"journal\":{\"name\":\"Device\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981230/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Device\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.device.2024.100676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Device","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.device.2024.100676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable bioelectronics based on emerging nanomaterials for telehealth applications.
Nanomaterial-driven, soft wearable bioelectronics are transforming telemedicine by offering skin comfort, biocompatibility, and the capability for continuous remote monitoring of physiological signals. The devices, enabled by advanced zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) nanomaterials, have achieved new levels in electrical stability and reliability, allowing them to perform effectively even under dynamic physical conditions. Despite their promise, significant challenges remain in the fabrication, integration, and practical deployment of nanoscale materials and devices. Critical challenges include ensuring the durability and stability of nanomaterial-based bioelectronics for extended wear and developing efficient integration strategies to support multifunctional sensing modalities. Telemedicine has revolutionized healthcare by enabling remote health monitoring. The integration of nanomaterials within wearable devices is a central factor driving this breakthrough, as these materials enhance sensor sensitivity, durability, and multifunctionality. These wearable sensors leverage various operating principles tailored to specific applications, such as intraocular pressure monitoring, electrophysiological signal recording, and biochemical marker tracking.