Jiuzhi Ma, Qi Feng, Zhipeng Sun, Manru Wang, Qiyuan Dai, Yue Huang, Xiaodong Cao and Qingtao Li
{"title":"金属酚醛网络涂层为骨缺损再生提供来自根尖乳头的纳米囊泡干细胞。","authors":"Jiuzhi Ma, Qi Feng, Zhipeng Sun, Manru Wang, Qiyuan Dai, Yue Huang, Xiaodong Cao and Qingtao Li","doi":"10.1039/D5TB00631G","DOIUrl":null,"url":null,"abstract":"<p >Bone defects have a broad impact, with over four million patients globally needing bone defect reconstruction every year due to various causes. Extracellular vesicle-functionalized scaffolds have recently emerged as a novel therapeutic approach for enhancing bone tissue regeneration. However, the clinical application of exosomes is limited by their low yield and rapid <em>in vivo</em> clearance. To address these challenges, we prepared nanovesicles (SCAPs-NVs) from stem cells of the apical papilla (SCAPs) using the extrusion method and loaded them into a tannic acid-Fe<small><sup>3+</sup></small> network modified decellularized diaphragmatic tendon matrix. SCAPs can be abundantly obtained directly from extracted immature permanent teeth, are more readily available than other stem cells and also have the potential for multi-lineage differentiation. The strong interaction between tannic acid (TA) and the phospholipid bilayer of SCAPs-NVs enabled the controlled release of SCAPs-NVs. In our study, under the same conditions, the yield of SCAPs-NVs was approximately 23-fold higher than that of exosomes obtained by ultracentrifugation, highlighting the efficiency of the extrusion method. Moreover, MicroRNA sequencing of SCAPs-NVs reveals that they are enriched in angiogenic and osteogenic miRNAs. <em>In vitro</em> results showed that the composite scaffold loaded with SCAPs-NVs stimulated osteogenic differentiation of mesenchymal stem cells and promoted angiogenic activity of human umbilical vein endothelial cells. Micro-CT and histological evaluation confirmed the efficacy of the NVs-functionalized scaffold in promoting bone regeneration within a rat cranial defect model. This study provides novel insights into the therapeutic potential of nanovesicles, particularly SCAPs-NV, for clinical translation in bone regeneration.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 21","pages":" 6101-6116"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal–phenolic network coatings delivering stem cells from apical papilla derived nanovesicles for bone defect regeneration†\",\"authors\":\"Jiuzhi Ma, Qi Feng, Zhipeng Sun, Manru Wang, Qiyuan Dai, Yue Huang, Xiaodong Cao and Qingtao Li\",\"doi\":\"10.1039/D5TB00631G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Bone defects have a broad impact, with over four million patients globally needing bone defect reconstruction every year due to various causes. Extracellular vesicle-functionalized scaffolds have recently emerged as a novel therapeutic approach for enhancing bone tissue regeneration. However, the clinical application of exosomes is limited by their low yield and rapid <em>in vivo</em> clearance. To address these challenges, we prepared nanovesicles (SCAPs-NVs) from stem cells of the apical papilla (SCAPs) using the extrusion method and loaded them into a tannic acid-Fe<small><sup>3+</sup></small> network modified decellularized diaphragmatic tendon matrix. SCAPs can be abundantly obtained directly from extracted immature permanent teeth, are more readily available than other stem cells and also have the potential for multi-lineage differentiation. The strong interaction between tannic acid (TA) and the phospholipid bilayer of SCAPs-NVs enabled the controlled release of SCAPs-NVs. In our study, under the same conditions, the yield of SCAPs-NVs was approximately 23-fold higher than that of exosomes obtained by ultracentrifugation, highlighting the efficiency of the extrusion method. Moreover, MicroRNA sequencing of SCAPs-NVs reveals that they are enriched in angiogenic and osteogenic miRNAs. <em>In vitro</em> results showed that the composite scaffold loaded with SCAPs-NVs stimulated osteogenic differentiation of mesenchymal stem cells and promoted angiogenic activity of human umbilical vein endothelial cells. Micro-CT and histological evaluation confirmed the efficacy of the NVs-functionalized scaffold in promoting bone regeneration within a rat cranial defect model. This study provides novel insights into the therapeutic potential of nanovesicles, particularly SCAPs-NV, for clinical translation in bone regeneration.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 21\",\"pages\":\" 6101-6116\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00631g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00631g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Metal–phenolic network coatings delivering stem cells from apical papilla derived nanovesicles for bone defect regeneration†
Bone defects have a broad impact, with over four million patients globally needing bone defect reconstruction every year due to various causes. Extracellular vesicle-functionalized scaffolds have recently emerged as a novel therapeutic approach for enhancing bone tissue regeneration. However, the clinical application of exosomes is limited by their low yield and rapid in vivo clearance. To address these challenges, we prepared nanovesicles (SCAPs-NVs) from stem cells of the apical papilla (SCAPs) using the extrusion method and loaded them into a tannic acid-Fe3+ network modified decellularized diaphragmatic tendon matrix. SCAPs can be abundantly obtained directly from extracted immature permanent teeth, are more readily available than other stem cells and also have the potential for multi-lineage differentiation. The strong interaction between tannic acid (TA) and the phospholipid bilayer of SCAPs-NVs enabled the controlled release of SCAPs-NVs. In our study, under the same conditions, the yield of SCAPs-NVs was approximately 23-fold higher than that of exosomes obtained by ultracentrifugation, highlighting the efficiency of the extrusion method. Moreover, MicroRNA sequencing of SCAPs-NVs reveals that they are enriched in angiogenic and osteogenic miRNAs. In vitro results showed that the composite scaffold loaded with SCAPs-NVs stimulated osteogenic differentiation of mesenchymal stem cells and promoted angiogenic activity of human umbilical vein endothelial cells. Micro-CT and histological evaluation confirmed the efficacy of the NVs-functionalized scaffold in promoting bone regeneration within a rat cranial defect model. This study provides novel insights into the therapeutic potential of nanovesicles, particularly SCAPs-NV, for clinical translation in bone regeneration.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices