基于QR分解和闵可夫斯基距离的帧重伪造检测与定位。

IF 1.8 4区 医学 Q2 MEDICINE, LEGAL
Khaled Loukhaoukha PhD
{"title":"基于QR分解和闵可夫斯基距离的帧重伪造检测与定位。","authors":"Khaled Loukhaoukha PhD","doi":"10.1111/1556-4029.70043","DOIUrl":null,"url":null,"abstract":"<p>The widespread use of multimedia editing tools has facilitated the creation of realistic video forgeries, jeopardizing the trust in video content. To address frame duplication forgery, a prevalent technique, this paper introduces a novel algorithm leveraging QR decomposition (orthogonal-triangular decomposition) and Minkowski distance. The algorithm extracts frame features using QR decomposition and compares them with a reference frame using Minkowski distance. Candidate duplicates are identified through random block matching. We evaluate the proposed method on standard datasets (TDTVD, LASIESTA, and IVY LAB) and a self-generated dataset. Our method achieves exceptional performance, attaining a perfect <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n </semantics></math>-score for video-level detection on both the TDTVD and our self-generated datasets. Notably, for frame-level detection, it achieves an average accuracy of 0.9943, precision of 0.9752, recall of 0.9858, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n </semantics></math>-score of 0.9803 across all datasets. Our analysis demonstrates the proposed method demonstrates promising performance in detecting multiply-duplicated frames and shows robustness against post-processing, potentially outperforming existing approaches.</p>","PeriodicalId":15743,"journal":{"name":"Journal of forensic sciences","volume":"70 4","pages":"1359-1374"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frame duplication forgery detection and localization based on QR decomposition and Minkowski distance\",\"authors\":\"Khaled Loukhaoukha PhD\",\"doi\":\"10.1111/1556-4029.70043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The widespread use of multimedia editing tools has facilitated the creation of realistic video forgeries, jeopardizing the trust in video content. To address frame duplication forgery, a prevalent technique, this paper introduces a novel algorithm leveraging QR decomposition (orthogonal-triangular decomposition) and Minkowski distance. The algorithm extracts frame features using QR decomposition and compares them with a reference frame using Minkowski distance. Candidate duplicates are identified through random block matching. We evaluate the proposed method on standard datasets (TDTVD, LASIESTA, and IVY LAB) and a self-generated dataset. Our method achieves exceptional performance, attaining a perfect <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </semantics></math>-score for video-level detection on both the TDTVD and our self-generated datasets. Notably, for frame-level detection, it achieves an average accuracy of 0.9943, precision of 0.9752, recall of 0.9858, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n </semantics></math>-score of 0.9803 across all datasets. Our analysis demonstrates the proposed method demonstrates promising performance in detecting multiply-duplicated frames and shows robustness against post-processing, potentially outperforming existing approaches.</p>\",\"PeriodicalId\":15743,\"journal\":{\"name\":\"Journal of forensic sciences\",\"volume\":\"70 4\",\"pages\":\"1359-1374\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of forensic sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.70043\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of forensic sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1556-4029.70043","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

多媒体编辑工具的广泛使用促进了逼真视频伪造的产生,危及对视频内容的信任。为了解决一种普遍存在的帧重复伪造技术,本文介绍了一种利用QR分解(正交三角分解)和闵可夫斯基距离的新算法。该算法利用QR分解提取帧特征,并利用闵可夫斯基距离与参考帧进行比较。候选副本通过随机块匹配来识别。我们在标准数据集(TDTVD, LASIESTA和IVY LAB)和自生成数据集上评估了所提出的方法。我们的方法实现了卓越的性能,在TDTVD和我们自己生成的数据集上都获得了完美的f1 $$ {\mathrm{F}}_1 $$ -分数。值得注意的是,对于帧级检测,它在所有数据集上的平均准确率为0.9943,精度为0.9752,召回率为0.9858,f1 $$ {\mathrm{F}}_1 $$ -score为0.9803。我们的分析表明,所提出的方法在检测多个重复帧方面表现出有希望的性能,并且对后处理具有鲁棒性,可能优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frame duplication forgery detection and localization based on QR decomposition and Minkowski distance

The widespread use of multimedia editing tools has facilitated the creation of realistic video forgeries, jeopardizing the trust in video content. To address frame duplication forgery, a prevalent technique, this paper introduces a novel algorithm leveraging QR decomposition (orthogonal-triangular decomposition) and Minkowski distance. The algorithm extracts frame features using QR decomposition and compares them with a reference frame using Minkowski distance. Candidate duplicates are identified through random block matching. We evaluate the proposed method on standard datasets (TDTVD, LASIESTA, and IVY LAB) and a self-generated dataset. Our method achieves exceptional performance, attaining a perfect F 1 -score for video-level detection on both the TDTVD and our self-generated datasets. Notably, for frame-level detection, it achieves an average accuracy of 0.9943, precision of 0.9752, recall of 0.9858, and F 1 -score of 0.9803 across all datasets. Our analysis demonstrates the proposed method demonstrates promising performance in detecting multiply-duplicated frames and shows robustness against post-processing, potentially outperforming existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of forensic sciences
Journal of forensic sciences 医学-医学:法
CiteScore
4.00
自引率
12.50%
发文量
215
审稿时长
2 months
期刊介绍: The Journal of Forensic Sciences (JFS) is the official publication of the American Academy of Forensic Sciences (AAFS). It is devoted to the publication of original investigations, observations, scholarly inquiries and reviews in various branches of the forensic sciences. These include anthropology, criminalistics, digital and multimedia sciences, engineering and applied sciences, pathology/biology, psychiatry and behavioral science, jurisprudence, odontology, questioned documents, and toxicology. Similar submissions dealing with forensic aspects of other sciences and the social sciences are also accepted, as are submissions dealing with scientifically sound emerging science disciplines. The content and/or views expressed in the JFS are not necessarily those of the AAFS, the JFS Editorial Board, the organizations with which authors are affiliated, or the publisher of JFS. All manuscript submissions are double-blind peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信