{"title":"基于XBB.1.5的灭活SARS-CoV-2疫苗对仓鼠XBB.1.5和JN.1株有部分保护作用。","authors":"Ryuta Uraki, Mutsumi Ito, Maki Kiso, Kiyoko Iwatsuki-Horimoto, Masafumi Endo, Seiya Yamayoshi, Yoshihiro Kawaoka","doi":"10.1038/s44298-025-00096-y","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 Omicron BA.2.86 variant and its descendant lineages, including JN.1, are rapidly spreading and becoming dominant globally. Vaccination is an essential primary preventative measure. While mRNA vaccines have been widely used worldwide, it is essential that we continue to prepare alternative vaccine modalities. Consistent with WHO recommendations, we developed an inactivated Omicron XBB.1.5 vaccine and assessed its efficacy against XBB.1.5 and JN.1 strains. Immunization with the inactivated XBB.1.5 vaccine induced antigen-specific antibodies leading to protection from XBB.1.5 and antigenically distinct JN.1 strains in a hamster model. In addition, we found that immunization reduced viral replication in hamster respiratory organs, suggesting protection against XBB.1.5 and JN.1 variants. Our findings highlight the potential of inactivated vaccines against evolving SARS-CoV-2 variants.</p>","PeriodicalId":520240,"journal":{"name":"Npj viruses","volume":"3 1","pages":"7"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790961/pdf/","citationCount":"0","resultStr":"{\"title\":\"An XBB.1.5-based inactivated SARS-CoV-2 vaccine partially protects against XBB.1.5 and JN.1 strains in hamsters.\",\"authors\":\"Ryuta Uraki, Mutsumi Ito, Maki Kiso, Kiyoko Iwatsuki-Horimoto, Masafumi Endo, Seiya Yamayoshi, Yoshihiro Kawaoka\",\"doi\":\"10.1038/s44298-025-00096-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SARS-CoV-2 Omicron BA.2.86 variant and its descendant lineages, including JN.1, are rapidly spreading and becoming dominant globally. Vaccination is an essential primary preventative measure. While mRNA vaccines have been widely used worldwide, it is essential that we continue to prepare alternative vaccine modalities. Consistent with WHO recommendations, we developed an inactivated Omicron XBB.1.5 vaccine and assessed its efficacy against XBB.1.5 and JN.1 strains. Immunization with the inactivated XBB.1.5 vaccine induced antigen-specific antibodies leading to protection from XBB.1.5 and antigenically distinct JN.1 strains in a hamster model. In addition, we found that immunization reduced viral replication in hamster respiratory organs, suggesting protection against XBB.1.5 and JN.1 variants. Our findings highlight the potential of inactivated vaccines against evolving SARS-CoV-2 variants.</p>\",\"PeriodicalId\":520240,\"journal\":{\"name\":\"Npj viruses\",\"volume\":\"3 1\",\"pages\":\"7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npj viruses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44298-025-00096-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj viruses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44298-025-00096-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An XBB.1.5-based inactivated SARS-CoV-2 vaccine partially protects against XBB.1.5 and JN.1 strains in hamsters.
The SARS-CoV-2 Omicron BA.2.86 variant and its descendant lineages, including JN.1, are rapidly spreading and becoming dominant globally. Vaccination is an essential primary preventative measure. While mRNA vaccines have been widely used worldwide, it is essential that we continue to prepare alternative vaccine modalities. Consistent with WHO recommendations, we developed an inactivated Omicron XBB.1.5 vaccine and assessed its efficacy against XBB.1.5 and JN.1 strains. Immunization with the inactivated XBB.1.5 vaccine induced antigen-specific antibodies leading to protection from XBB.1.5 and antigenically distinct JN.1 strains in a hamster model. In addition, we found that immunization reduced viral replication in hamster respiratory organs, suggesting protection against XBB.1.5 and JN.1 variants. Our findings highlight the potential of inactivated vaccines against evolving SARS-CoV-2 variants.