机器学习识别预测气候相关信念和行为的关键个人和国家层面的因素。

npj climate action Pub Date : 2025-01-01 Epub Date: 2025-05-08 DOI:10.1038/s44168-025-00251-4
Boryana Todorova, David Steyrl, Matthew J Hornsey, Samuel Pearson, Cameron Brick, Florian Lange, Jay J Van Bavel, Madalina Vlasceanu, Claus Lamm, Kimberly C Doell
{"title":"机器学习识别预测气候相关信念和行为的关键个人和国家层面的因素。","authors":"Boryana Todorova, David Steyrl, Matthew J Hornsey, Samuel Pearson, Cameron Brick, Florian Lange, Jay J Van Bavel, Madalina Vlasceanu, Claus Lamm, Kimberly C Doell","doi":"10.1038/s44168-025-00251-4","DOIUrl":null,"url":null,"abstract":"<p><p>While numerous studies have examined factors associated with climate-friendly beliefs and behaviors, a systematic, cross-national ranking of their key correlates is lacking. We use interpretable machine learning to quantify the extent to which different climate-relevant outcomes (climate change belief, policy support, willingness to share information on social media, and a pro-environmental behavioral task) are predictable and to rank 19 individual- and nation-level predictors in terms of their importance across 55 countries (<i>N</i> = 4635). We find notable differences in explained variance for the outcomes (e.g., 57% for climate change belief vs. 10% for pro-environmental behavior). Four predictors had consistent effects across all outcomes: environmentalist identity, trust in climate science, internal environmental motivation, and the Human Development Index. However, most of the predictors show divergent patterns, predicting some but not all outcomes or even having opposite effects. To better capture this complexity, future models should include multi-level factors and consider the different contexts (e.g., public vs private) in which climate-related cognition and action emerge.</p>","PeriodicalId":519998,"journal":{"name":"npj climate action","volume":"4 1","pages":"46"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning identifies key individual and nation-level factors predicting climate-relevant beliefs and behaviors.\",\"authors\":\"Boryana Todorova, David Steyrl, Matthew J Hornsey, Samuel Pearson, Cameron Brick, Florian Lange, Jay J Van Bavel, Madalina Vlasceanu, Claus Lamm, Kimberly C Doell\",\"doi\":\"10.1038/s44168-025-00251-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While numerous studies have examined factors associated with climate-friendly beliefs and behaviors, a systematic, cross-national ranking of their key correlates is lacking. We use interpretable machine learning to quantify the extent to which different climate-relevant outcomes (climate change belief, policy support, willingness to share information on social media, and a pro-environmental behavioral task) are predictable and to rank 19 individual- and nation-level predictors in terms of their importance across 55 countries (<i>N</i> = 4635). We find notable differences in explained variance for the outcomes (e.g., 57% for climate change belief vs. 10% for pro-environmental behavior). Four predictors had consistent effects across all outcomes: environmentalist identity, trust in climate science, internal environmental motivation, and the Human Development Index. However, most of the predictors show divergent patterns, predicting some but not all outcomes or even having opposite effects. To better capture this complexity, future models should include multi-level factors and consider the different contexts (e.g., public vs private) in which climate-related cognition and action emerge.</p>\",\"PeriodicalId\":519998,\"journal\":{\"name\":\"npj climate action\",\"volume\":\"4 1\",\"pages\":\"46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj climate action\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44168-025-00251-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj climate action","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44168-025-00251-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然有许多研究调查了与气候友好信念和行为相关的因素,但缺乏对其关键相关因素进行系统的跨国排名。我们使用可解释的机器学习来量化不同气候相关结果(气候变化信念、政策支持、在社交媒体上分享信息的意愿、亲环境行为任务)的可预测程度,并根据其重要性对55个国家(N = 4635)的19个个人和国家层面的预测因素进行排名。我们发现结果的解释方差存在显著差异(例如,气候变化信念为57%,亲环境行为为10%)。四个预测因素对所有结果都有一致的影响:环保主义者身份、对气候科学的信任、内部环境动机和人类发展指数。然而,大多数预测器显示出不同的模式,预测一些但不是所有的结果,甚至有相反的效果。为了更好地捕捉这种复杂性,未来的模型应该包括多层次的因素,并考虑与气候相关的认知和行动出现的不同背景(例如,公共与私人)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning identifies key individual and nation-level factors predicting climate-relevant beliefs and behaviors.

While numerous studies have examined factors associated with climate-friendly beliefs and behaviors, a systematic, cross-national ranking of their key correlates is lacking. We use interpretable machine learning to quantify the extent to which different climate-relevant outcomes (climate change belief, policy support, willingness to share information on social media, and a pro-environmental behavioral task) are predictable and to rank 19 individual- and nation-level predictors in terms of their importance across 55 countries (N = 4635). We find notable differences in explained variance for the outcomes (e.g., 57% for climate change belief vs. 10% for pro-environmental behavior). Four predictors had consistent effects across all outcomes: environmentalist identity, trust in climate science, internal environmental motivation, and the Human Development Index. However, most of the predictors show divergent patterns, predicting some but not all outcomes or even having opposite effects. To better capture this complexity, future models should include multi-level factors and consider the different contexts (e.g., public vs private) in which climate-related cognition and action emerge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信