基于高光谱成像和深度学习的骨肉瘤和骨痂多模态诊断方法。

Yan Li, Bingsen Zhao, Shuangxiu Li, Xiaoqing Yang, Minmin Yu, Zhijun Li
{"title":"基于高光谱成像和深度学习的骨肉瘤和骨痂多模态诊断方法。","authors":"Yan Li, Bingsen Zhao, Shuangxiu Li, Xiaoqing Yang, Minmin Yu, Zhijun Li","doi":"10.1002/jbio.202500087","DOIUrl":null,"url":null,"abstract":"<p><p>Distinguishing osteosarcoma from bone callus remains a clinical challenge due to their morphological similarities. This study proposes J-CAN, a multimodal deep learning framework integrating hyperspectral imaging (HSI) and H&E-stained pathology for rapid and accurate classification. The HSI system captures 176 spectral bands (400-1000 nm), providing molecular-level insights. MobileNetV2 extracts spatial features, while 1D-CNN processes spectral signatures. A self-attention mechanism enhances feature selection, prioritizing key spectral and spatial characteristics to improve classification performance. Experimental results show that J-CAN outperforms conventional models, including LSTM, SVM, and 1D-CNN, achieving 87.33% accuracy, 89.07% sensitivity, and 85.49% specificity. These findings demonstrate the potential of HSI-driven deep learning for clinical pathology, enabling efficient, automated osteosarcoma diagnosis. This approach enhances diagnostic precision and provides a valuable tool for pathologists, addressing the limitations of traditional histopathological assessments and improving the differentiation between osteosarcoma and bone callus.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500087"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Diagnostic Approach for Osteosarcoma and Bone Callus Using Hyperspectral Imaging and Deep Learning.\",\"authors\":\"Yan Li, Bingsen Zhao, Shuangxiu Li, Xiaoqing Yang, Minmin Yu, Zhijun Li\",\"doi\":\"10.1002/jbio.202500087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Distinguishing osteosarcoma from bone callus remains a clinical challenge due to their morphological similarities. This study proposes J-CAN, a multimodal deep learning framework integrating hyperspectral imaging (HSI) and H&E-stained pathology for rapid and accurate classification. The HSI system captures 176 spectral bands (400-1000 nm), providing molecular-level insights. MobileNetV2 extracts spatial features, while 1D-CNN processes spectral signatures. A self-attention mechanism enhances feature selection, prioritizing key spectral and spatial characteristics to improve classification performance. Experimental results show that J-CAN outperforms conventional models, including LSTM, SVM, and 1D-CNN, achieving 87.33% accuracy, 89.07% sensitivity, and 85.49% specificity. These findings demonstrate the potential of HSI-driven deep learning for clinical pathology, enabling efficient, automated osteosarcoma diagnosis. This approach enhances diagnostic precision and provides a valuable tool for pathologists, addressing the limitations of traditional histopathological assessments and improving the differentiation between osteosarcoma and bone callus.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202500087\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202500087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

区分骨肉瘤和骨痂是一个临床挑战,因为它们的形态相似。本研究提出了J-CAN,一种多模态深度学习框架,将高光谱成像(HSI)和h&e染色病理学相结合,用于快速准确的分类。HSI系统捕获176个光谱波段(400-1000 nm),提供分子水平的见解。MobileNetV2提取空间特征,而1D-CNN处理光谱特征。自关注机制增强了特征选择,优先考虑关键的光谱和空间特征,以提高分类性能。实验结果表明,J-CAN优于LSTM、SVM、1D-CNN等传统模型,准确率为87.33%,灵敏度为89.07%,特异度为85.49%。这些发现证明了hsi驱动的深度学习在临床病理学中的潜力,可以实现高效、自动化的骨肉瘤诊断。这种方法提高了诊断精度,为病理学家提供了有价值的工具,解决了传统组织病理学评估的局限性,提高了骨肉瘤和骨痂之间的区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Diagnostic Approach for Osteosarcoma and Bone Callus Using Hyperspectral Imaging and Deep Learning.

Distinguishing osteosarcoma from bone callus remains a clinical challenge due to their morphological similarities. This study proposes J-CAN, a multimodal deep learning framework integrating hyperspectral imaging (HSI) and H&E-stained pathology for rapid and accurate classification. The HSI system captures 176 spectral bands (400-1000 nm), providing molecular-level insights. MobileNetV2 extracts spatial features, while 1D-CNN processes spectral signatures. A self-attention mechanism enhances feature selection, prioritizing key spectral and spatial characteristics to improve classification performance. Experimental results show that J-CAN outperforms conventional models, including LSTM, SVM, and 1D-CNN, achieving 87.33% accuracy, 89.07% sensitivity, and 85.49% specificity. These findings demonstrate the potential of HSI-driven deep learning for clinical pathology, enabling efficient, automated osteosarcoma diagnosis. This approach enhances diagnostic precision and provides a valuable tool for pathologists, addressing the limitations of traditional histopathological assessments and improving the differentiation between osteosarcoma and bone callus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信