小的GTPase Rap1A通过促进Rac和NOX2的自激活来加速NOX2的氧化爆发。

Hope Elizabeth Johnson, Hope Gloria Umutesi, Jongyun Heo
{"title":"小的GTPase Rap1A通过促进Rac和NOX2的自激活来加速NOX2的氧化爆发。","authors":"Hope Elizabeth Johnson, Hope Gloria Umutesi, Jongyun Heo","doi":"10.1111/febs.70107","DOIUrl":null,"url":null,"abstract":"<p><p>Rac and Rap1A are small GTPases with the redox-sensitive GX<sub>4</sub>GK(S/T)C/ECS and NKCD motif. Of the known NADPH oxidase (NOX) isoforms, NOX1 and NOX2 function with the redox-sensitive Rac. Both exhibit an oxidative burst in which superoxide production is initially lagged but then accelerated. This burst is a reflection of NOX1 and NOX2 autoactivations occurring alongside the redox-dependent Rac autoactivation. NOX2 also contains the redox-sensitive Rap1A. However, its role in NOX2 function was unknown. In this study, we show that Rap1A is also autoactivated by its redox response, which is coupled to Rac and NOX2 autoactivations. This coupling is found to be mediated through the Rap1A-dependent recruitment of the Rac GEF P-REX1 to the NOX2 system. We further show that the initiation threshold and propagation rate of Rap1A autoactivation are lower and slower, respectively, than those of Rac and NOX2. The low-threshold Rap1A autoactivation recruits P-REX1 to the NOX2 system, resulting in the production of active Rac, thereby aiding the high-threshold initiation and propagation of Rac and NOX2 autoactivations. This results in the rapid completion of the NOX2 oxidative burst, which is specific to NOX2 because NOX1 lacks Rap1A. The redox response differences between the Rap1A NKCD motif and the Rac GX4GK(S/T)C/ECS motif appear to be the basis for the feature differences between Rap1A autoactivation and those of Rac and NOX2 autoactivations. The GX<sub>4</sub>GK(S/T)C/ECS and NKCD motifs are found in many redox-sensitive Rho/Rab and Ras family GTPases, respectively. Findings here shed light on previously unknown redox-dependent functional distinctions between these small GTPases.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The small GTPase Rap1A expedites the NOX2 oxidative burst by facilitating Rac and NOX2 autoactivations.\",\"authors\":\"Hope Elizabeth Johnson, Hope Gloria Umutesi, Jongyun Heo\",\"doi\":\"10.1111/febs.70107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rac and Rap1A are small GTPases with the redox-sensitive GX<sub>4</sub>GK(S/T)C/ECS and NKCD motif. Of the known NADPH oxidase (NOX) isoforms, NOX1 and NOX2 function with the redox-sensitive Rac. Both exhibit an oxidative burst in which superoxide production is initially lagged but then accelerated. This burst is a reflection of NOX1 and NOX2 autoactivations occurring alongside the redox-dependent Rac autoactivation. NOX2 also contains the redox-sensitive Rap1A. However, its role in NOX2 function was unknown. In this study, we show that Rap1A is also autoactivated by its redox response, which is coupled to Rac and NOX2 autoactivations. This coupling is found to be mediated through the Rap1A-dependent recruitment of the Rac GEF P-REX1 to the NOX2 system. We further show that the initiation threshold and propagation rate of Rap1A autoactivation are lower and slower, respectively, than those of Rac and NOX2. The low-threshold Rap1A autoactivation recruits P-REX1 to the NOX2 system, resulting in the production of active Rac, thereby aiding the high-threshold initiation and propagation of Rac and NOX2 autoactivations. This results in the rapid completion of the NOX2 oxidative burst, which is specific to NOX2 because NOX1 lacks Rap1A. The redox response differences between the Rap1A NKCD motif and the Rac GX4GK(S/T)C/ECS motif appear to be the basis for the feature differences between Rap1A autoactivation and those of Rac and NOX2 autoactivations. The GX<sub>4</sub>GK(S/T)C/ECS and NKCD motifs are found in many redox-sensitive Rho/Rab and Ras family GTPases, respectively. Findings here shed light on previously unknown redox-dependent functional distinctions between these small GTPases.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Rac和Rap1A是小的gtpase,具有氧化还原敏感的GX4GK(S/T)C/ECS和NKCD基序。在已知的NADPH氧化酶(NOX)亚型中,NOX1和NOX2与氧化还原敏感的Rac一起起作用。两者都表现出氧化爆发,其中超氧化物的产生最初滞后,但随后加速。这种爆发是NOX1和NOX2自激活与氧化还原依赖的Rac自激活同时发生的反映。NOX2也含有氧化还原敏感的Rap1A。但其在NOX2功能中的作用尚不清楚。在这项研究中,我们发现Rap1A也通过其氧化还原反应被自激活,这与Rac和NOX2的自激活相耦合。这种耦合是通过rap1a依赖性募集Rac GEF P-REX1到NOX2系统介导的。我们进一步发现,Rap1A自激活的起始阈值和繁殖速率分别比Rac和NOX2低和慢。低阈值的Rap1A自激活将P-REX1招募到NOX2系统中,导致活性Rac的产生,从而帮助Rac和NOX2自激活的高阈值启动和传播。这导致NOX2氧化爆发的快速完成,这是NOX2特有的,因为NOX1缺乏Rap1A。Rap1A NKCD基序与Rac GX4GK(S/T)C/ECS基序之间的氧化还原反应差异似乎是Rap1A自激活与Rac和NOX2自激活之间特征差异的基础。GX4GK(S/T)C/ECS和NKCD基序分别存在于许多氧化还原敏感的Rho/Rab和Ras家族GTPases中。这里的发现揭示了这些小gtpase之间以前未知的氧化还原依赖的功能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The small GTPase Rap1A expedites the NOX2 oxidative burst by facilitating Rac and NOX2 autoactivations.

Rac and Rap1A are small GTPases with the redox-sensitive GX4GK(S/T)C/ECS and NKCD motif. Of the known NADPH oxidase (NOX) isoforms, NOX1 and NOX2 function with the redox-sensitive Rac. Both exhibit an oxidative burst in which superoxide production is initially lagged but then accelerated. This burst is a reflection of NOX1 and NOX2 autoactivations occurring alongside the redox-dependent Rac autoactivation. NOX2 also contains the redox-sensitive Rap1A. However, its role in NOX2 function was unknown. In this study, we show that Rap1A is also autoactivated by its redox response, which is coupled to Rac and NOX2 autoactivations. This coupling is found to be mediated through the Rap1A-dependent recruitment of the Rac GEF P-REX1 to the NOX2 system. We further show that the initiation threshold and propagation rate of Rap1A autoactivation are lower and slower, respectively, than those of Rac and NOX2. The low-threshold Rap1A autoactivation recruits P-REX1 to the NOX2 system, resulting in the production of active Rac, thereby aiding the high-threshold initiation and propagation of Rac and NOX2 autoactivations. This results in the rapid completion of the NOX2 oxidative burst, which is specific to NOX2 because NOX1 lacks Rap1A. The redox response differences between the Rap1A NKCD motif and the Rac GX4GK(S/T)C/ECS motif appear to be the basis for the feature differences between Rap1A autoactivation and those of Rac and NOX2 autoactivations. The GX4GK(S/T)C/ECS and NKCD motifs are found in many redox-sensitive Rho/Rab and Ras family GTPases, respectively. Findings here shed light on previously unknown redox-dependent functional distinctions between these small GTPases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信