{"title":"生态研究中脑电信号预处理与源定位的评价。","authors":"Carlos Gomez-Tapia, Bojan Bozic, Luca Longo","doi":"10.3389/fnimg.2025.1479569","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Electroencephalography (EEG) source localization (SL) has shown potential for various applications, from epilepsy and seizure focus localization to psychiatric disorder evaluation. However, questions remain about its neurophysiological plausibility in real-world settings where only EEG signals are available without subject-specific anatomical information. This study investigates whether established pre-processing and source localization methods can produce neurophysiologically plausible activation patterns when applied to naturalistic EEG data without structural magnetic resonance imaging (MRI) or digitized electrode positions.</p><p><strong>Methods: </strong>Proven methods are aggregated into an end-to-end pipeline that includes automatic pre-processing, eLORETA for source estimation, and a shared forward model derived from the ICBM 2009c Nonlinear Symmetric template and its corresponding CerebrA atlas. The pipeline is validated using two distinct datasets: the Healthy Brain Network (HBN) dataset comparing resting and naturalistic video-watching states and the multi-session and multi-task EEG cognitive dataset (COGBCI) comparing different cognitive workload levels. The validation approach focuses on whether the reconstructed source activations exhibit expected neurophysiological patterns via permutation testing.</p><p><strong>Results: </strong>Findings revealed significant differences between resting state and video-watching tasks, with greater activation in posterior regions during video-watching, consistent with known visual processing pathways. The cognitive workload analysis similarly showed progressive activation increases with task difficulty, mapping to regions associated with executive function.</p><p><strong>Discussion: </strong>These results prove that established source localization methods can produce neurophysiologically plausible activation patterns without subject-specific information, highlighting the strengths and limitations of applying these methods to mid-length naturalistic EEG data. This research demonstrates the viability of template-based source analysis for research settings where individual structural imaging is unavailable or impractical.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"4 ","pages":"1479569"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994696/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of EEG pre-processing and source localization in ecological research.\",\"authors\":\"Carlos Gomez-Tapia, Bojan Bozic, Luca Longo\",\"doi\":\"10.3389/fnimg.2025.1479569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Electroencephalography (EEG) source localization (SL) has shown potential for various applications, from epilepsy and seizure focus localization to psychiatric disorder evaluation. However, questions remain about its neurophysiological plausibility in real-world settings where only EEG signals are available without subject-specific anatomical information. This study investigates whether established pre-processing and source localization methods can produce neurophysiologically plausible activation patterns when applied to naturalistic EEG data without structural magnetic resonance imaging (MRI) or digitized electrode positions.</p><p><strong>Methods: </strong>Proven methods are aggregated into an end-to-end pipeline that includes automatic pre-processing, eLORETA for source estimation, and a shared forward model derived from the ICBM 2009c Nonlinear Symmetric template and its corresponding CerebrA atlas. The pipeline is validated using two distinct datasets: the Healthy Brain Network (HBN) dataset comparing resting and naturalistic video-watching states and the multi-session and multi-task EEG cognitive dataset (COGBCI) comparing different cognitive workload levels. The validation approach focuses on whether the reconstructed source activations exhibit expected neurophysiological patterns via permutation testing.</p><p><strong>Results: </strong>Findings revealed significant differences between resting state and video-watching tasks, with greater activation in posterior regions during video-watching, consistent with known visual processing pathways. The cognitive workload analysis similarly showed progressive activation increases with task difficulty, mapping to regions associated with executive function.</p><p><strong>Discussion: </strong>These results prove that established source localization methods can produce neurophysiologically plausible activation patterns without subject-specific information, highlighting the strengths and limitations of applying these methods to mid-length naturalistic EEG data. This research demonstrates the viability of template-based source analysis for research settings where individual structural imaging is unavailable or impractical.</p>\",\"PeriodicalId\":73094,\"journal\":{\"name\":\"Frontiers in neuroimaging\",\"volume\":\"4 \",\"pages\":\"1479569\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11994696/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnimg.2025.1479569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2025.1479569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluation of EEG pre-processing and source localization in ecological research.
Introduction: Electroencephalography (EEG) source localization (SL) has shown potential for various applications, from epilepsy and seizure focus localization to psychiatric disorder evaluation. However, questions remain about its neurophysiological plausibility in real-world settings where only EEG signals are available without subject-specific anatomical information. This study investigates whether established pre-processing and source localization methods can produce neurophysiologically plausible activation patterns when applied to naturalistic EEG data without structural magnetic resonance imaging (MRI) or digitized electrode positions.
Methods: Proven methods are aggregated into an end-to-end pipeline that includes automatic pre-processing, eLORETA for source estimation, and a shared forward model derived from the ICBM 2009c Nonlinear Symmetric template and its corresponding CerebrA atlas. The pipeline is validated using two distinct datasets: the Healthy Brain Network (HBN) dataset comparing resting and naturalistic video-watching states and the multi-session and multi-task EEG cognitive dataset (COGBCI) comparing different cognitive workload levels. The validation approach focuses on whether the reconstructed source activations exhibit expected neurophysiological patterns via permutation testing.
Results: Findings revealed significant differences between resting state and video-watching tasks, with greater activation in posterior regions during video-watching, consistent with known visual processing pathways. The cognitive workload analysis similarly showed progressive activation increases with task difficulty, mapping to regions associated with executive function.
Discussion: These results prove that established source localization methods can produce neurophysiologically plausible activation patterns without subject-specific information, highlighting the strengths and limitations of applying these methods to mid-length naturalistic EEG data. This research demonstrates the viability of template-based source analysis for research settings where individual structural imaging is unavailable or impractical.