基于集成可重构网格的卷积神经网络光子神经形态加速器。

Aris Tsirigotis, George Sarantoglou, Stavros Deligiannidis, Erica Sánchez, Ana Gutierrez, Adonis Bogris, Jose Capmany, Charis Mesaritakis
{"title":"基于集成可重构网格的卷积神经网络光子神经形态加速器。","authors":"Aris Tsirigotis, George Sarantoglou, Stavros Deligiannidis, Erica Sánchez, Ana Gutierrez, Adonis Bogris, Jose Capmany, Charis Mesaritakis","doi":"10.1038/s44172-025-00416-3","DOIUrl":null,"url":null,"abstract":"<p><p>Photonic accelerators have risen as energy efficient, low latency counterparts to computational hungry digital modules for machine learning applications. On the other hand, upscaling integrated photonic circuits to meet the demands of state-of-the-art machine learning schemes such as convolutional layers, remains challenging. In this work, we experimentally validate a photonic-integrated neuromorphic accelerator that uses a hardware-friendly optical spectrum slicing technique through a reconfigurable silicon photonic mesh. The proposed scheme acts as an analogue convolutional engine, enabling information preprocessing in the optical domain, dimensionality reduction, and extraction of spatio-temporal features. Numerical results demonstrate that with only 7 photonic nodes, critical modules of a digital convolutional neural network can be replaced. As a result, a 98.6% accuracy on the MNIST dataset was numerically achieved, with an estimation of power consumption reduction up to 30% compared to digital convolutional neural networks. Experimental results using a reconfigurable silicon integrated chip confirm these findings, achieving 97.7% accuracy with only three optical nodes.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"80"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038015/pdf/","citationCount":"0","resultStr":"{\"title\":\"Photonic neuromorphic accelerator for convolutional neural networks based on an integrated reconfigurable mesh.\",\"authors\":\"Aris Tsirigotis, George Sarantoglou, Stavros Deligiannidis, Erica Sánchez, Ana Gutierrez, Adonis Bogris, Jose Capmany, Charis Mesaritakis\",\"doi\":\"10.1038/s44172-025-00416-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photonic accelerators have risen as energy efficient, low latency counterparts to computational hungry digital modules for machine learning applications. On the other hand, upscaling integrated photonic circuits to meet the demands of state-of-the-art machine learning schemes such as convolutional layers, remains challenging. In this work, we experimentally validate a photonic-integrated neuromorphic accelerator that uses a hardware-friendly optical spectrum slicing technique through a reconfigurable silicon photonic mesh. The proposed scheme acts as an analogue convolutional engine, enabling information preprocessing in the optical domain, dimensionality reduction, and extraction of spatio-temporal features. Numerical results demonstrate that with only 7 photonic nodes, critical modules of a digital convolutional neural network can be replaced. As a result, a 98.6% accuracy on the MNIST dataset was numerically achieved, with an estimation of power consumption reduction up to 30% compared to digital convolutional neural networks. Experimental results using a reconfigurable silicon integrated chip confirm these findings, achieving 97.7% accuracy with only three optical nodes.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038015/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00416-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00416-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光子加速器已经崛起为节能、低延迟的机器学习应用中需要大量计算的数字模块的对应物。另一方面,升级集成光子电路以满足最先进的机器学习方案(如卷积层)的需求仍然具有挑战性。在这项工作中,我们通过实验验证了光子集成神经形态加速器,该加速器通过可重构硅光子网格使用硬件友好的光谱切片技术。该方案作为一个模拟卷积引擎,实现了光域信息预处理、降维和时空特征提取。数值结果表明,仅用7个光子节点就可以替换数字卷积神经网络的关键模块。结果,在MNIST数据集上实现了98.6%的数值精度,与数字卷积神经网络相比,功耗估计降低了30%。使用可重构硅集成芯片的实验结果证实了这些发现,仅用三个光节点就实现了97.7%的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photonic neuromorphic accelerator for convolutional neural networks based on an integrated reconfigurable mesh.

Photonic accelerators have risen as energy efficient, low latency counterparts to computational hungry digital modules for machine learning applications. On the other hand, upscaling integrated photonic circuits to meet the demands of state-of-the-art machine learning schemes such as convolutional layers, remains challenging. In this work, we experimentally validate a photonic-integrated neuromorphic accelerator that uses a hardware-friendly optical spectrum slicing technique through a reconfigurable silicon photonic mesh. The proposed scheme acts as an analogue convolutional engine, enabling information preprocessing in the optical domain, dimensionality reduction, and extraction of spatio-temporal features. Numerical results demonstrate that with only 7 photonic nodes, critical modules of a digital convolutional neural network can be replaced. As a result, a 98.6% accuracy on the MNIST dataset was numerically achieved, with an estimation of power consumption reduction up to 30% compared to digital convolutional neural networks. Experimental results using a reconfigurable silicon integrated chip confirm these findings, achieving 97.7% accuracy with only three optical nodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信