基于蛋白质组学的干性评分测量致癌去分化,并能够识别可药物靶点。

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-06-11 Epub Date: 2025-04-17 DOI:10.1016/j.xgen.2025.100851
Iga Kołodziejczak-Guglas, Renan L S Simões, Emerson de Souza Santos, Elizabeth G Demicco, Rossana N Lazcano Segura, Weiping Ma, Pei Wang, Yifat Geffen, Erik Storrs, Francesca Petralia, Antonio Colaprico, Felipe da Veiga Leprevost, Pietro Pugliese, Michele Ceccarelli, Houtan Noushmehr, Alexey I Nesvizhskii, Bożena Kamińska, Waldemar Priebe, Jan Lubiński, Bing Zhang, Alexander J Lazar, Paweł Kurzawa, Mehdi Mesri, Ana I Robles, Li Ding, Tathiane M Malta, Maciej Wiznerowicz
{"title":"基于蛋白质组学的干性评分测量致癌去分化,并能够识别可药物靶点。","authors":"Iga Kołodziejczak-Guglas, Renan L S Simões, Emerson de Souza Santos, Elizabeth G Demicco, Rossana N Lazcano Segura, Weiping Ma, Pei Wang, Yifat Geffen, Erik Storrs, Francesca Petralia, Antonio Colaprico, Felipe da Veiga Leprevost, Pietro Pugliese, Michele Ceccarelli, Houtan Noushmehr, Alexey I Nesvizhskii, Bożena Kamińska, Waldemar Priebe, Jan Lubiński, Bing Zhang, Alexander J Lazar, Paweł Kurzawa, Mehdi Mesri, Ana I Robles, Li Ding, Tathiane M Malta, Maciej Wiznerowicz","doi":"10.1016/j.xgen.2025.100851","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer progression and therapeutic resistance are closely linked to a stemness phenotype. Here, we introduce a protein-expression-based stemness index (PROTsi) to evaluate oncogenic dedifferentiation in relation to histopathology, molecular features, and clinical outcomes. Utilizing datasets from the Clinical Proteomic Tumor Analysis Consortium across 11 tumor types, we validate PROTsi's effectiveness in accurately quantifying stem-like features. Through integration of PROTsi with multi-omics, including protein post-translational modifications, we identify molecular features associated with stemness and proteins that act as active nodes within transcriptional networks, driving tumor aggressiveness. Proteins highly correlated with stemness were identified as potential drug targets, both shared and tumor specific. These stemness-associated proteins demonstrate predictive value for clinical outcomes, as confirmed by immunohistochemistry in multiple samples. The findings emphasize PROTsi's efficacy as a valuable tool for selecting predictive protein targets, a crucial step in customizing anti-cancer therapy and advancing the clinical development of cures for cancer patients.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100851"},"PeriodicalIF":11.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230239/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomic-based stemness score measures oncogenic dedifferentiation and enables the identification of druggable targets.\",\"authors\":\"Iga Kołodziejczak-Guglas, Renan L S Simões, Emerson de Souza Santos, Elizabeth G Demicco, Rossana N Lazcano Segura, Weiping Ma, Pei Wang, Yifat Geffen, Erik Storrs, Francesca Petralia, Antonio Colaprico, Felipe da Veiga Leprevost, Pietro Pugliese, Michele Ceccarelli, Houtan Noushmehr, Alexey I Nesvizhskii, Bożena Kamińska, Waldemar Priebe, Jan Lubiński, Bing Zhang, Alexander J Lazar, Paweł Kurzawa, Mehdi Mesri, Ana I Robles, Li Ding, Tathiane M Malta, Maciej Wiznerowicz\",\"doi\":\"10.1016/j.xgen.2025.100851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer progression and therapeutic resistance are closely linked to a stemness phenotype. Here, we introduce a protein-expression-based stemness index (PROTsi) to evaluate oncogenic dedifferentiation in relation to histopathology, molecular features, and clinical outcomes. Utilizing datasets from the Clinical Proteomic Tumor Analysis Consortium across 11 tumor types, we validate PROTsi's effectiveness in accurately quantifying stem-like features. Through integration of PROTsi with multi-omics, including protein post-translational modifications, we identify molecular features associated with stemness and proteins that act as active nodes within transcriptional networks, driving tumor aggressiveness. Proteins highly correlated with stemness were identified as potential drug targets, both shared and tumor specific. These stemness-associated proteins demonstrate predictive value for clinical outcomes, as confirmed by immunohistochemistry in multiple samples. The findings emphasize PROTsi's efficacy as a valuable tool for selecting predictive protein targets, a crucial step in customizing anti-cancer therapy and advancing the clinical development of cures for cancer patients.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100851\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12230239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症的进展和治疗耐药性与茎干表型密切相关。在这里,我们引入了基于蛋白表达的干细胞指数(PROTsi)来评估与组织病理学、分子特征和临床结果相关的癌性去分化。利用临床蛋白质组学肿瘤分析联盟(Clinical proteomics Tumor Analysis Consortium)的11种肿瘤类型数据集,我们验证了PROTsi在准确量化茎样特征方面的有效性。通过整合PROTsi与多组学,包括蛋白质翻译后修饰,我们确定了与干性和蛋白质相关的分子特征,这些蛋白质在转录网络中充当活跃节点,驱动肿瘤侵袭性。与干性高度相关的蛋白被确定为潜在的药物靶点,无论是共享的还是肿瘤特异性的。这些干细胞相关蛋白对临床结果具有预测价值,在多个样本中被免疫组织化学证实。这些发现强调了PROTsi作为选择预测蛋白靶点的有价值工具的功效,这是定制抗癌治疗和推进癌症患者治疗临床发展的关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proteomic-based stemness score measures oncogenic dedifferentiation and enables the identification of druggable targets.

Cancer progression and therapeutic resistance are closely linked to a stemness phenotype. Here, we introduce a protein-expression-based stemness index (PROTsi) to evaluate oncogenic dedifferentiation in relation to histopathology, molecular features, and clinical outcomes. Utilizing datasets from the Clinical Proteomic Tumor Analysis Consortium across 11 tumor types, we validate PROTsi's effectiveness in accurately quantifying stem-like features. Through integration of PROTsi with multi-omics, including protein post-translational modifications, we identify molecular features associated with stemness and proteins that act as active nodes within transcriptional networks, driving tumor aggressiveness. Proteins highly correlated with stemness were identified as potential drug targets, both shared and tumor specific. These stemness-associated proteins demonstrate predictive value for clinical outcomes, as confirmed by immunohistochemistry in multiple samples. The findings emphasize PROTsi's efficacy as a valuable tool for selecting predictive protein targets, a crucial step in customizing anti-cancer therapy and advancing the clinical development of cures for cancer patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信