具有时变函数的多智能体系统的自由意志任意时间优化。

Jia Wu, Wenyan Tang, Wenzhong Lei, Yongfang Xie, Touseef Ali
{"title":"具有时变函数的多智能体系统的自由意志任意时间优化。","authors":"Jia Wu, Wenyan Tang, Wenzhong Lei, Yongfang Xie, Touseef Ali","doi":"10.1016/j.isatra.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>The article investigates the problem of free-will arbitrary-time optimization for multi-agent systems. This refers to an optimization algorithm that not only urges all agents to come to a consensus but also collaboratively minimizes the sum of their individual time-varying objective functions within a predesignated arbitrary time frame. Unlike fixed-time or finite-time optimization issues, the problem here allows for the specification of an arbitrary settling time. To address this issue, we developed distributed optimization strategies with arbitrary settling times for the single-integrator and double-integrator multi-agent systems. Given the strongly convex nature of the time-varying functions specific to each agent, our algorithms are crafted utilizing the zero-gradient-sum approach. Theoretical analysis shows that our proposed algorithms are effective in minimizing the collective objective function and ensuring consensus among all agents within a user-defined arbitrary time frame. Illustrative simulation examples validate these theoretical results.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free-will arbitrary time optimization for multi-agent systems with time-varying function.\",\"authors\":\"Jia Wu, Wenyan Tang, Wenzhong Lei, Yongfang Xie, Touseef Ali\",\"doi\":\"10.1016/j.isatra.2025.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The article investigates the problem of free-will arbitrary-time optimization for multi-agent systems. This refers to an optimization algorithm that not only urges all agents to come to a consensus but also collaboratively minimizes the sum of their individual time-varying objective functions within a predesignated arbitrary time frame. Unlike fixed-time or finite-time optimization issues, the problem here allows for the specification of an arbitrary settling time. To address this issue, we developed distributed optimization strategies with arbitrary settling times for the single-integrator and double-integrator multi-agent systems. Given the strongly convex nature of the time-varying functions specific to each agent, our algorithms are crafted utilizing the zero-gradient-sum approach. Theoretical analysis shows that our proposed algorithms are effective in minimizing the collective objective function and ensuring consensus among all agents within a user-defined arbitrary time frame. Illustrative simulation examples validate these theoretical results.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.04.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.04.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了多智能体系统的自由意志任意时间优化问题。这是一种优化算法,它既能促使所有智能体达成共识,又能在预先指定的任意时间框架内协同最小化它们各自时变目标函数的总和。与固定时间或有限时间优化问题不同,这里的问题允许指定任意的稳定时间。为了解决这个问题,我们针对单集成商和双集成商多智能体系统开发了具有任意沉淀时间的分布式优化策略。考虑到特定于每个代理的时变函数的强凸性质,我们的算法是利用零梯度和方法设计的。理论分析表明,我们提出的算法在最小化集体目标函数和在用户定义的任意时间框架内确保所有智能体之间的一致性方面是有效的。说明性仿真实例验证了这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free-will arbitrary time optimization for multi-agent systems with time-varying function.

The article investigates the problem of free-will arbitrary-time optimization for multi-agent systems. This refers to an optimization algorithm that not only urges all agents to come to a consensus but also collaboratively minimizes the sum of their individual time-varying objective functions within a predesignated arbitrary time frame. Unlike fixed-time or finite-time optimization issues, the problem here allows for the specification of an arbitrary settling time. To address this issue, we developed distributed optimization strategies with arbitrary settling times for the single-integrator and double-integrator multi-agent systems. Given the strongly convex nature of the time-varying functions specific to each agent, our algorithms are crafted utilizing the zero-gradient-sum approach. Theoretical analysis shows that our proposed algorithms are effective in minimizing the collective objective function and ensuring consensus among all agents within a user-defined arbitrary time frame. Illustrative simulation examples validate these theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信