环节动物管虫Galeolaria caespitosa的染色体水平基因组。

IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Monique van Dorssen, Emily K Belcher, Cristóbal Gallegos, Kathryn A Hodgins, Keyne Monro
{"title":"环节动物管虫Galeolaria caespitosa的染色体水平基因组。","authors":"Monique van Dorssen, Emily K Belcher, Cristóbal Gallegos, Kathryn A Hodgins, Keyne Monro","doi":"10.1093/jhered/esaf025","DOIUrl":null,"url":null,"abstract":"<p><p>Haplotype-resolved (phased) genome assemblies are emerging as important assets for genomic studies of species with high heterozygosity, but remain lacking for key animal lineages. Here, we use PacBio HiFi and Omni-C technologies to assemble the first phased, annotated, chromosome-level genome for any annelid: the reef-building tubeworm Galeolaria caespitosa (Serpulidae). The assembly is 803.5 Mbp long (scaffold N50 = 76.5 Mbp) for haplotype 1 and 789.3 Mbp long (scaffold N50 = 75.4 Mbp) for haplotype 2, which are arranged into 11 pairs of chromosomes showing no sign of sex chromosomes. This compares with cytological analyses reporting 12-13 pairs in G. caespitosa's closest relatives, including species that are protandrous hermaphrodites. We combined long-read and short-read transcriptome sequencing to annotate both haplotypes, resulting in 30,495 predicted proteins for haplotype 1, 27,423 proteins for haplotype two, and 79.5% of proteins with at least one functional annotation. We also assembled a mitochondrial genome 23 Kbp long, annotating all genes typically found in mitochondrial DNA apart from those coding the 16S ribosomal subunit (rrnL) and the protein atp8 - a short, fast-evolving mitochondrial gene missing in other metazoans. Comparing G. caespitosa's genome to those of three other annelids reveals limited collinearity despite 36.0% of shared orthologous gene clusters (4,238 of 11,763 clusters counted in G. caespitosa), suggesting extensive chromosomal rearrangements among lineages. New high-quality annelid genomes may help resolve the genetic and evolutionary basis of this diversity.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A phased chromosome-level genome of the annelid tubeworm Galeolaria caespitosa.\",\"authors\":\"Monique van Dorssen, Emily K Belcher, Cristóbal Gallegos, Kathryn A Hodgins, Keyne Monro\",\"doi\":\"10.1093/jhered/esaf025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Haplotype-resolved (phased) genome assemblies are emerging as important assets for genomic studies of species with high heterozygosity, but remain lacking for key animal lineages. Here, we use PacBio HiFi and Omni-C technologies to assemble the first phased, annotated, chromosome-level genome for any annelid: the reef-building tubeworm Galeolaria caespitosa (Serpulidae). The assembly is 803.5 Mbp long (scaffold N50 = 76.5 Mbp) for haplotype 1 and 789.3 Mbp long (scaffold N50 = 75.4 Mbp) for haplotype 2, which are arranged into 11 pairs of chromosomes showing no sign of sex chromosomes. This compares with cytological analyses reporting 12-13 pairs in G. caespitosa's closest relatives, including species that are protandrous hermaphrodites. We combined long-read and short-read transcriptome sequencing to annotate both haplotypes, resulting in 30,495 predicted proteins for haplotype 1, 27,423 proteins for haplotype two, and 79.5% of proteins with at least one functional annotation. We also assembled a mitochondrial genome 23 Kbp long, annotating all genes typically found in mitochondrial DNA apart from those coding the 16S ribosomal subunit (rrnL) and the protein atp8 - a short, fast-evolving mitochondrial gene missing in other metazoans. Comparing G. caespitosa's genome to those of three other annelids reveals limited collinearity despite 36.0% of shared orthologous gene clusters (4,238 of 11,763 clusters counted in G. caespitosa), suggesting extensive chromosomal rearrangements among lineages. New high-quality annelid genomes may help resolve the genetic and evolutionary basis of this diversity.</p>\",\"PeriodicalId\":54811,\"journal\":{\"name\":\"Journal of Heredity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jhered/esaf025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esaf025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单倍型分解(分阶段)基因组组装正在成为高杂合性物种基因组研究的重要资产,但在关键的动物谱系中仍然缺乏。在这里,我们使用PacBio HiFi和omic - c技术组装任何环节动物的第一阶段,带注释的染色体水平基因组:建礁管虫Galeolaria caespitosa (Serpulidae)。单倍型1的装配体长803.5 Mbp(支架N50 = 76.5 Mbp),单倍型2的装配体长789.3 Mbp(支架N50 = 75.4 Mbp),它们排列成11对染色体,没有性染色体的迹象。与此相比,细胞学分析报告在G. caespitosa的近亲中有12-13对,包括那些雌雄同体的物种。我们结合长读和短读转录组测序对两种单倍型进行了注释,结果为单倍型1预测了30,495种蛋白质,为单倍型2预测了27,423种蛋白质,79.5%的蛋白质至少有一个功能注释。我们还组装了一个长23kbp的线粒体基因组,注释了线粒体DNA中除了编码16S核糖体亚基(rrnL)和atp8蛋白(其他后生动物中缺失的一种短而快速进化的线粒体基因)之外的所有典型基因。将caespitosa的基因组与其他三种环节动物的基因组进行比较,发现共线性有限,尽管共有36.0%的同源基因簇(11,763个簇中有4,238个在caespitosa中统计),表明谱系之间存在广泛的染色体重排。新的高质量环节动物基因组可能有助于解决这种多样性的遗传和进化基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A phased chromosome-level genome of the annelid tubeworm Galeolaria caespitosa.

Haplotype-resolved (phased) genome assemblies are emerging as important assets for genomic studies of species with high heterozygosity, but remain lacking for key animal lineages. Here, we use PacBio HiFi and Omni-C technologies to assemble the first phased, annotated, chromosome-level genome for any annelid: the reef-building tubeworm Galeolaria caespitosa (Serpulidae). The assembly is 803.5 Mbp long (scaffold N50 = 76.5 Mbp) for haplotype 1 and 789.3 Mbp long (scaffold N50 = 75.4 Mbp) for haplotype 2, which are arranged into 11 pairs of chromosomes showing no sign of sex chromosomes. This compares with cytological analyses reporting 12-13 pairs in G. caespitosa's closest relatives, including species that are protandrous hermaphrodites. We combined long-read and short-read transcriptome sequencing to annotate both haplotypes, resulting in 30,495 predicted proteins for haplotype 1, 27,423 proteins for haplotype two, and 79.5% of proteins with at least one functional annotation. We also assembled a mitochondrial genome 23 Kbp long, annotating all genes typically found in mitochondrial DNA apart from those coding the 16S ribosomal subunit (rrnL) and the protein atp8 - a short, fast-evolving mitochondrial gene missing in other metazoans. Comparing G. caespitosa's genome to those of three other annelids reveals limited collinearity despite 36.0% of shared orthologous gene clusters (4,238 of 11,763 clusters counted in G. caespitosa), suggesting extensive chromosomal rearrangements among lineages. New high-quality annelid genomes may help resolve the genetic and evolutionary basis of this diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Heredity
Journal of Heredity 生物-遗传学
CiteScore
5.20
自引率
6.50%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal. Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信