细菌第三型分泌系统诱导液泡膜机械穿孔。

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
Léa Swistak, Marvin Albert, Camila Valenzuela, Elif Begum Gokerkucuk, François Bontems, Stéphane Tachon, Keith T Egger, Anastasia D Gazi, Anna Sartori-Rupp, Cammie F Lesser, Perrine Paul-Gilloteaux, Jean-Yves Tinevez, Matthijn Vos, Jost Enninga
{"title":"细菌第三型分泌系统诱导液泡膜机械穿孔。","authors":"Léa Swistak, Marvin Albert, Camila Valenzuela, Elif Begum Gokerkucuk, François Bontems, Stéphane Tachon, Keith T Egger, Anastasia D Gazi, Anna Sartori-Rupp, Cammie F Lesser, Perrine Paul-Gilloteaux, Jean-Yves Tinevez, Matthijn Vos, Jost Enninga","doi":"10.1371/journal.pbio.3003135","DOIUrl":null,"url":null,"abstract":"<p><p>Endomembrane breaching is a crucial strategy employed by intracellular pathogens enclosed within vacuoles to access the nutrient-rich cytosol for intracellular replication. While bacteria use various mechanisms to compromise host membranes, the specific processes and factors involved are often unknown. Shigella flexneri, a major human pathogen, accesses the cytosol relying on the Type Three Secretion System (T3SS) and secreted effectors. Using in-cell correlative light and electron microscopy, we tracked the sequential steps of Shigella host cell entry. Moreover, we captured the T3SS, which projects a needle from the bacterial surface, in the process of puncturing holes in the vacuolar membrane. This initial puncture ensures disruption of the vacuole. Together this introduces the concept of mechanoporation via a bacterial secretion system as a crucial process for bacterial pathogen-induced membrane damage.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 5","pages":"e3003135"},"PeriodicalIF":9.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045489/pdf/","citationCount":"0","resultStr":"{\"title\":\"The bacterial type three secretion system induces mechanoporation of vacuolar membranes.\",\"authors\":\"Léa Swistak, Marvin Albert, Camila Valenzuela, Elif Begum Gokerkucuk, François Bontems, Stéphane Tachon, Keith T Egger, Anastasia D Gazi, Anna Sartori-Rupp, Cammie F Lesser, Perrine Paul-Gilloteaux, Jean-Yves Tinevez, Matthijn Vos, Jost Enninga\",\"doi\":\"10.1371/journal.pbio.3003135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endomembrane breaching is a crucial strategy employed by intracellular pathogens enclosed within vacuoles to access the nutrient-rich cytosol for intracellular replication. While bacteria use various mechanisms to compromise host membranes, the specific processes and factors involved are often unknown. Shigella flexneri, a major human pathogen, accesses the cytosol relying on the Type Three Secretion System (T3SS) and secreted effectors. Using in-cell correlative light and electron microscopy, we tracked the sequential steps of Shigella host cell entry. Moreover, we captured the T3SS, which projects a needle from the bacterial surface, in the process of puncturing holes in the vacuolar membrane. This initial puncture ensures disruption of the vacuole. Together this introduces the concept of mechanoporation via a bacterial secretion system as a crucial process for bacterial pathogen-induced membrane damage.</p>\",\"PeriodicalId\":49001,\"journal\":{\"name\":\"PLoS Biology\",\"volume\":\"23 5\",\"pages\":\"e3003135\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045489/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pbio.3003135\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3003135","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

破膜是细胞内病原体在液泡内进入营养丰富的细胞质进行细胞内复制的关键策略。虽然细菌利用各种机制破坏宿主膜,但所涉及的具体过程和因素往往是未知的。福氏志贺氏菌是一种主要的人类病原体,依靠第三型分泌系统(T3SS)和分泌效应物进入细胞质。利用细胞内相关光镜和电子显微镜,我们追踪了志贺氏菌进入宿主细胞的顺序步骤。此外,我们还捕获了T3SS,它在穿刺液泡膜孔的过程中从细菌表面伸出一根针。初始穿刺确保液泡破裂。总之,这介绍了通过细菌分泌系统机械穿孔的概念,这是细菌病原体诱导的膜损伤的关键过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The bacterial type three secretion system induces mechanoporation of vacuolar membranes.

Endomembrane breaching is a crucial strategy employed by intracellular pathogens enclosed within vacuoles to access the nutrient-rich cytosol for intracellular replication. While bacteria use various mechanisms to compromise host membranes, the specific processes and factors involved are often unknown. Shigella flexneri, a major human pathogen, accesses the cytosol relying on the Type Three Secretion System (T3SS) and secreted effectors. Using in-cell correlative light and electron microscopy, we tracked the sequential steps of Shigella host cell entry. Moreover, we captured the T3SS, which projects a needle from the bacterial surface, in the process of puncturing holes in the vacuolar membrane. This initial puncture ensures disruption of the vacuole. Together this introduces the concept of mechanoporation via a bacterial secretion system as a crucial process for bacterial pathogen-induced membrane damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信