AD-AutoGPT:阿尔茨海默病信息流行病学的自主GPT。

PLOS global public health Pub Date : 2025-05-07 eCollection Date: 2025-01-01 DOI:10.1371/journal.pgph.0004383
Haixing Dai, Yiwei Li, Zhengliang Liu, Lin Zhao, Zihao Wu, Suhang Song, Shen Ye, Dajiang Zhu, Xiang Li, Sheng Li, Xiaobai Yao, Lu Shi, Tai-Quan Peng, Quanzheng Li, Zhuo Chen, Donglan Zhang, Tianming Liu, Gengchen Mai
{"title":"AD-AutoGPT:阿尔茨海默病信息流行病学的自主GPT。","authors":"Haixing Dai, Yiwei Li, Zhengliang Liu, Lin Zhao, Zihao Wu, Suhang Song, Shen Ye, Dajiang Zhu, Xiang Li, Sheng Li, Xiaobai Yao, Lu Shi, Tai-Quan Peng, Quanzheng Li, Zhuo Chen, Donglan Zhang, Tianming Liu, Gengchen Mai","doi":"10.1371/journal.pgph.0004383","DOIUrl":null,"url":null,"abstract":"<p><p>In this pioneering study, inspired by AutoGPT, the state-of-the-art open-source application based on the GPT-4 large language model, we develop a novel tool called AD-AutoGPT, which can conduct data collection, processing, and analysis about complex health narratives of Alzheimer's Disease in an autonomous manner via users' textual prompts. We collated comprehensive data from a variety of news sources, including the Alzheimer's Association, BBC, Mayo Clinic, and the National Institute on Aging since June 2022, leading to the autonomous execution of robust trend analyses, intertopic distance map visualization, and identification of salient terms pertinent to Alzheimer's Disease. This approach has yielded not only a quantifiable metric of relevant discourse but also valuable insights into public focus on Alzheimer's Disease. This application of AD-AutoGPT in public health signifies the transformative potential of AI in facilitating a data-rich understanding of complex health narratives like Alzheimer's Disease in an autonomous manner, setting the groundwork for future AI-driven investigations in global health landscapes. Code, a demo video, and other information are available at https://github.com/levyisthebest/AD-AutoGPT.</p>","PeriodicalId":74466,"journal":{"name":"PLOS global public health","volume":"5 5","pages":"e0004383"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058166/pdf/","citationCount":"0","resultStr":"{\"title\":\"AD-AutoGPT: An autonomous GPT for Alzheimer's disease infodemiology.\",\"authors\":\"Haixing Dai, Yiwei Li, Zhengliang Liu, Lin Zhao, Zihao Wu, Suhang Song, Shen Ye, Dajiang Zhu, Xiang Li, Sheng Li, Xiaobai Yao, Lu Shi, Tai-Quan Peng, Quanzheng Li, Zhuo Chen, Donglan Zhang, Tianming Liu, Gengchen Mai\",\"doi\":\"10.1371/journal.pgph.0004383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this pioneering study, inspired by AutoGPT, the state-of-the-art open-source application based on the GPT-4 large language model, we develop a novel tool called AD-AutoGPT, which can conduct data collection, processing, and analysis about complex health narratives of Alzheimer's Disease in an autonomous manner via users' textual prompts. We collated comprehensive data from a variety of news sources, including the Alzheimer's Association, BBC, Mayo Clinic, and the National Institute on Aging since June 2022, leading to the autonomous execution of robust trend analyses, intertopic distance map visualization, and identification of salient terms pertinent to Alzheimer's Disease. This approach has yielded not only a quantifiable metric of relevant discourse but also valuable insights into public focus on Alzheimer's Disease. This application of AD-AutoGPT in public health signifies the transformative potential of AI in facilitating a data-rich understanding of complex health narratives like Alzheimer's Disease in an autonomous manner, setting the groundwork for future AI-driven investigations in global health landscapes. Code, a demo video, and other information are available at https://github.com/levyisthebest/AD-AutoGPT.</p>\",\"PeriodicalId\":74466,\"journal\":{\"name\":\"PLOS global public health\",\"volume\":\"5 5\",\"pages\":\"e0004383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058166/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS global public health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgph.0004383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS global public health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pgph.0004383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项开创性的研究中,受基于GPT-4大型语言模型的最先进的开源应用程序AutoGPT的启发,我们开发了一种名为AD-AutoGPT的新工具,它可以通过用户的文本提示以自主方式对阿尔茨海默病的复杂健康叙述进行数据收集,处理和分析。自2022年6月以来,我们整理了来自各种新闻来源的综合数据,包括阿尔茨海默病协会,BBC,梅奥诊所和国家老龄化研究所,从而自主执行强大的趋势分析,主题间距离地图可视化,并识别与阿尔茨海默病相关的突出术语。这种方法不仅产生了相关论述的可量化指标,而且还产生了对公众关注阿尔茨海默病的有价值的见解。AD-AutoGPT在公共卫生领域的应用表明,人工智能在以自主方式促进对阿尔茨海默病等复杂健康问题的数据丰富的理解方面具有变革潜力,为未来在全球卫生领域进行人工智能驱动的调查奠定了基础。代码、演示视频和其他信息可在https://github.com/levyisthebest/AD-AutoGPT上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AD-AutoGPT: An autonomous GPT for Alzheimer's disease infodemiology.

In this pioneering study, inspired by AutoGPT, the state-of-the-art open-source application based on the GPT-4 large language model, we develop a novel tool called AD-AutoGPT, which can conduct data collection, processing, and analysis about complex health narratives of Alzheimer's Disease in an autonomous manner via users' textual prompts. We collated comprehensive data from a variety of news sources, including the Alzheimer's Association, BBC, Mayo Clinic, and the National Institute on Aging since June 2022, leading to the autonomous execution of robust trend analyses, intertopic distance map visualization, and identification of salient terms pertinent to Alzheimer's Disease. This approach has yielded not only a quantifiable metric of relevant discourse but also valuable insights into public focus on Alzheimer's Disease. This application of AD-AutoGPT in public health signifies the transformative potential of AI in facilitating a data-rich understanding of complex health narratives like Alzheimer's Disease in an autonomous manner, setting the groundwork for future AI-driven investigations in global health landscapes. Code, a demo video, and other information are available at https://github.com/levyisthebest/AD-AutoGPT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信