麝鹿和麝鼠宿主和微生物群间的趋同麝香生物合成。

IF 4.7 1区 生物学 Q1 ZOOLOGY
Yi-Shan Sun, Lei Zhao, Cheng-Li Zheng, Xiao-Ting Yan, Ye Li, Xue-Li Gao, Ting-Feng Xue, Yi-Ming Zhang, Zhi-Peng Li, Rasmus Heller, Chen-Guang Feng, Chao Xu, Kun Wang, Qiang Qiu
{"title":"麝鹿和麝鼠宿主和微生物群间的趋同麝香生物合成。","authors":"Yi-Shan Sun, Lei Zhao, Cheng-Li Zheng, Xiao-Ting Yan, Ye Li, Xue-Li Gao, Ting-Feng Xue, Yi-Ming Zhang, Zhi-Peng Li, Rasmus Heller, Chen-Guang Feng, Chao Xu, Kun Wang, Qiang Qiu","doi":"10.24272/j.issn.2095-8137.2025.094","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian scent glands mediate species-specific chemical communication, yet the mechanistic basis for convergent musk production remain incompletely understood. Forest musk deer and muskrat have independently evolved specialized musk-secreting glands, representing a striking case of convergent evolution. Through an integrated multi-omics approach, this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat, although downstream metabolite profiles diverged between the two lineages. Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production, distinct from those in conventional apocrine glands. Convergent features were evident at the cellular level, where acinar, ductal, and basal epithelial subtypes showed parallel molecular signatures across both taxa. Notably, acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism (e.g., <i>ACSBG1, HSD17B12</i>, <i>HACD2</i>, and <i>HADHA</i>), suggesting a conserved molecular framework for musk precursor biosynthesis. Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by <i>Corynebacterium</i> and enriched in lipid metabolic pathways. These findings suggest multi-level convergence in musk biosynthesis, from molecular pathways to microbial communities, providing novel insights into mammalian chemical signaling and artificial musk production.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 3","pages":"505-517"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Convergent musk biosynthesis across host and microbiota in musk deer and muskrat.\",\"authors\":\"Yi-Shan Sun, Lei Zhao, Cheng-Li Zheng, Xiao-Ting Yan, Ye Li, Xue-Li Gao, Ting-Feng Xue, Yi-Ming Zhang, Zhi-Peng Li, Rasmus Heller, Chen-Guang Feng, Chao Xu, Kun Wang, Qiang Qiu\",\"doi\":\"10.24272/j.issn.2095-8137.2025.094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammalian scent glands mediate species-specific chemical communication, yet the mechanistic basis for convergent musk production remain incompletely understood. Forest musk deer and muskrat have independently evolved specialized musk-secreting glands, representing a striking case of convergent evolution. Through an integrated multi-omics approach, this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat, although downstream metabolite profiles diverged between the two lineages. Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production, distinct from those in conventional apocrine glands. Convergent features were evident at the cellular level, where acinar, ductal, and basal epithelial subtypes showed parallel molecular signatures across both taxa. Notably, acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism (e.g., <i>ACSBG1, HSD17B12</i>, <i>HACD2</i>, and <i>HADHA</i>), suggesting a conserved molecular framework for musk precursor biosynthesis. Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by <i>Corynebacterium</i> and enriched in lipid metabolic pathways. These findings suggest multi-level convergence in musk biosynthesis, from molecular pathways to microbial communities, providing novel insights into mammalian chemical signaling and artificial musk production.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"46 3\",\"pages\":\"505-517\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12361909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2025.094\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2025.094","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

哺乳动物的气味腺体介导物种特异性的化学交流,但趋同麝香生产的机制基础仍不完全清楚。森林麝和麝鼠各自独立地进化出了专门的麝香分泌腺,这是趋同进化的一个惊人案例。通过综合多组学方法,本研究确定了环戊烷酮是森林麝和麝鼠麝香中共享的关键代谢前体,尽管下游代谢物在两个谱系之间存在差异。单细胞RNA测序显示,这些特化的大汗腺具有独特的分泌结构,并表现出与周期性麝香生产相关的转录谱,与传统的大汗腺不同。细胞水平上的趋同特征很明显,其中腺泡、导管和基底上皮亚型在两个分类群中表现出平行的分子特征。值得注意的是,这两个物种的腺泡细胞表达了参与脂肪酸和甘油脂代谢的共同基因(如ACSBG1、HSD17B12、HACD2和HADHA),表明麝香前体生物合成具有保守的分子框架。对麝香样品的宏基因组分析进一步揭示了以棒状杆菌为主、富含脂质代谢途径的平行微生物群落结构。这些发现表明,从分子途径到微生物群落,麝香生物合成具有多层次的收敛性,为哺乳动物化学信号传导和人工麝香生产提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergent musk biosynthesis across host and microbiota in musk deer and muskrat.

Mammalian scent glands mediate species-specific chemical communication, yet the mechanistic basis for convergent musk production remain incompletely understood. Forest musk deer and muskrat have independently evolved specialized musk-secreting glands, representing a striking case of convergent evolution. Through an integrated multi-omics approach, this study identified cyclopentadecanone as a shared key metabolic precursor in musk from both forest musk deer and muskrat, although downstream metabolite profiles diverged between the two lineages. Single-cell RNA sequencing revealed that these specialized apocrine glands possessed unique secretory architecture and exhibited transcriptional profiles associated with periodic musk production, distinct from those in conventional apocrine glands. Convergent features were evident at the cellular level, where acinar, ductal, and basal epithelial subtypes showed parallel molecular signatures across both taxa. Notably, acinar cells in both species expressed common genes involved in fatty acid and glycerolipid metabolism (e.g., ACSBG1, HSD17B12, HACD2, and HADHA), suggesting a conserved molecular framework for musk precursor biosynthesis. Metagenomic analysis of musk samples further revealed parallel microbial community structures dominated by Corynebacterium and enriched in lipid metabolic pathways. These findings suggest multi-level convergence in musk biosynthesis, from molecular pathways to microbial communities, providing novel insights into mammalian chemical signaling and artificial musk production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信