响尾蛇的生活史和染色体组织决定了化学受体基因的表达。

IF 3 2区 生物学 Q2 EVOLUTIONARY BIOLOGY
Michael P Hogan, Matthew L Holding, Gunnar S Nystrom, Kylie C Lawrence, Emilie M Broussard, Schyler A Ellsworth, Andrew J Mason, Mark J Margres, H Lisle Gibbs, Christopher L Parkinson, Darin R Rokyta
{"title":"响尾蛇的生活史和染色体组织决定了化学受体基因的表达。","authors":"Michael P Hogan, Matthew L Holding, Gunnar S Nystrom, Kylie C Lawrence, Emilie M Broussard, Schyler A Ellsworth, Andrew J Mason, Mark J Margres, H Lisle Gibbs, Christopher L Parkinson, Darin R Rokyta","doi":"10.1093/jhered/esae078","DOIUrl":null,"url":null,"abstract":"<p><p>Predatory species who hunt for their prey rely on a suite of integrated characters, including sensory traits that are also used for nonpredatory behaviors. Linking the evolution of sensory traits to specific selection pressures therefore requires a deep understanding of the underlying genetics and molecular mechanisms producing these complex phenotypes. However, this relationship remains poorly understood for complex sensory systems that consist of proteins encoded by large gene families. The chemosensory repertoire of rattlesnakes includes hundreds of type-2 vomeronasal receptors and olfactory receptors, representing the two largest gene families found in the genome. To investigate the biological importance of this chemoreceptor diversity, we assessed gene expression in the eastern diamondback rattlesnake (Crotalus adamanteus) and identified sex- and age-biased genes. We found type-2 vomeronasal receptor expression in the vomeronasal epithelium was limited to juvenile snakes, suggesting the sensory programming of this tissue may be correlated with early life development. In the olfactory epithelium, we found subtle expression biases that were more indicative of life history rather than development. We also found transcriptional evidence for dosage compensation of sex-linked genes and trait integration in the expression of transcription factors. We overlay our molecular characterizations in Crotalus adamanteus onto updated olfactory receptor and type-2 vomeronasal receptor phylogenies, providing a genetic road map for future research on these receptors. Finally, we investigated the deeper macroevolutionary context of the most highly expressed type-2 vomeronasal receptor gene spanning the rise of tetrapods and estimated the strength of positive selection for individual amino acid residues in the predicted protein structure. We hypothesize that this gene may have evolved as a conserved signaling subunit to ensure consistent G-protein coupled receptor functionality, potentially relaxing signaling constraints on other type-2 vomeronasal receptor paralogs and promoting ligand binding specificity.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life history and chromosome organization determine chemoreceptor gene expression in rattlesnakes.\",\"authors\":\"Michael P Hogan, Matthew L Holding, Gunnar S Nystrom, Kylie C Lawrence, Emilie M Broussard, Schyler A Ellsworth, Andrew J Mason, Mark J Margres, H Lisle Gibbs, Christopher L Parkinson, Darin R Rokyta\",\"doi\":\"10.1093/jhered/esae078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predatory species who hunt for their prey rely on a suite of integrated characters, including sensory traits that are also used for nonpredatory behaviors. Linking the evolution of sensory traits to specific selection pressures therefore requires a deep understanding of the underlying genetics and molecular mechanisms producing these complex phenotypes. However, this relationship remains poorly understood for complex sensory systems that consist of proteins encoded by large gene families. The chemosensory repertoire of rattlesnakes includes hundreds of type-2 vomeronasal receptors and olfactory receptors, representing the two largest gene families found in the genome. To investigate the biological importance of this chemoreceptor diversity, we assessed gene expression in the eastern diamondback rattlesnake (Crotalus adamanteus) and identified sex- and age-biased genes. We found type-2 vomeronasal receptor expression in the vomeronasal epithelium was limited to juvenile snakes, suggesting the sensory programming of this tissue may be correlated with early life development. In the olfactory epithelium, we found subtle expression biases that were more indicative of life history rather than development. We also found transcriptional evidence for dosage compensation of sex-linked genes and trait integration in the expression of transcription factors. We overlay our molecular characterizations in Crotalus adamanteus onto updated olfactory receptor and type-2 vomeronasal receptor phylogenies, providing a genetic road map for future research on these receptors. Finally, we investigated the deeper macroevolutionary context of the most highly expressed type-2 vomeronasal receptor gene spanning the rise of tetrapods and estimated the strength of positive selection for individual amino acid residues in the predicted protein structure. We hypothesize that this gene may have evolved as a conserved signaling subunit to ensure consistent G-protein coupled receptor functionality, potentially relaxing signaling constraints on other type-2 vomeronasal receptor paralogs and promoting ligand binding specificity.</p>\",\"PeriodicalId\":54811,\"journal\":{\"name\":\"Journal of Heredity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heredity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jhered/esae078\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jhered/esae078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

掠食性物种捕食猎物依赖于一套完整的特征,包括非掠食性行为也使用的感官特征。因此,将感官性状的进化与特定的选择压力联系起来,需要对产生这些复杂表型的潜在遗传学和分子机制有深入的了解。然而,对于由大基因家族编码的蛋白质组成的复杂感觉系统,这种关系仍然知之甚少。响尾蛇的化学感受器包括数百个2型舌鼻感受器和嗅觉感受器,代表了基因组中发现的两个最大的基因家族。为了研究这种化学受体多样性的生物学重要性,我们评估了东部菱形响尾蛇(Crotalus adamanteus)的基因表达,并确定了性别和年龄偏见基因。我们发现2型犁鼻受体在犁鼻上皮中的表达仅限于幼年蛇,这表明该组织的感觉编程可能与早期生命发育有关。在嗅觉上皮中,我们发现微妙的表达偏差更能说明生活史而不是发育。我们还发现了转录因子表达中性别连锁基因的剂量补偿和性状整合的转录证据。我们将Crotalus adamanteus的分子特征覆盖到最新的嗅觉受体和2型犁鼻受体系统发育上,为这些受体的未来研究提供了遗传路线图。最后,我们研究了跨越四足动物兴起的最高度表达的2型v形鼻受体基因的更深层次的宏观进化背景,并估计了预测蛋白质结构中单个氨基酸残基的正选择强度。我们假设该基因可能已经进化为一个保守的信号亚基,以确保一致的g蛋白偶联受体功能,潜在地放松对其他2型v形鼻受体的信号限制,并促进配体结合特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Life history and chromosome organization determine chemoreceptor gene expression in rattlesnakes.

Predatory species who hunt for their prey rely on a suite of integrated characters, including sensory traits that are also used for nonpredatory behaviors. Linking the evolution of sensory traits to specific selection pressures therefore requires a deep understanding of the underlying genetics and molecular mechanisms producing these complex phenotypes. However, this relationship remains poorly understood for complex sensory systems that consist of proteins encoded by large gene families. The chemosensory repertoire of rattlesnakes includes hundreds of type-2 vomeronasal receptors and olfactory receptors, representing the two largest gene families found in the genome. To investigate the biological importance of this chemoreceptor diversity, we assessed gene expression in the eastern diamondback rattlesnake (Crotalus adamanteus) and identified sex- and age-biased genes. We found type-2 vomeronasal receptor expression in the vomeronasal epithelium was limited to juvenile snakes, suggesting the sensory programming of this tissue may be correlated with early life development. In the olfactory epithelium, we found subtle expression biases that were more indicative of life history rather than development. We also found transcriptional evidence for dosage compensation of sex-linked genes and trait integration in the expression of transcription factors. We overlay our molecular characterizations in Crotalus adamanteus onto updated olfactory receptor and type-2 vomeronasal receptor phylogenies, providing a genetic road map for future research on these receptors. Finally, we investigated the deeper macroevolutionary context of the most highly expressed type-2 vomeronasal receptor gene spanning the rise of tetrapods and estimated the strength of positive selection for individual amino acid residues in the predicted protein structure. We hypothesize that this gene may have evolved as a conserved signaling subunit to ensure consistent G-protein coupled receptor functionality, potentially relaxing signaling constraints on other type-2 vomeronasal receptor paralogs and promoting ligand binding specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Heredity
Journal of Heredity 生物-遗传学
CiteScore
5.20
自引率
6.50%
发文量
63
审稿时长
6-12 weeks
期刊介绍: Over the last 100 years, the Journal of Heredity has established and maintained a tradition of scholarly excellence in the publication of genetics research. Virtually every major figure in the field has contributed to the journal. Established in 1903, Journal of Heredity covers organismal genetics across a wide range of disciplines and taxa. Articles include such rapidly advancing fields as conservation genetics of endangered species, population structure and phylogeography, molecular evolution and speciation, molecular genetics of disease resistance in plants and animals, genetic biodiversity and relevant computer programs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信