基于物理和深度神经网络的锂离子电池组热故障检测模型。

Mina Naguib, Junran Chen, Phillip Kollmeyer, Ali Emadi
{"title":"基于物理和深度神经网络的锂离子电池组热故障检测模型。","authors":"Mina Naguib, Junran Chen, Phillip Kollmeyer, Ali Emadi","doi":"10.1038/s44172-025-00409-2","DOIUrl":null,"url":null,"abstract":"<p><p>Battery packs develop faults over time, many of which are difficult to detect early. For instance, cooling system blockages raises temperatures but may not trigger alerts until protection limits are exceeded. This work presents a model-based method for early thermal fault detection and identification in battery packs. By comparing measured and estimated temperatures, the method identifies faults including failed sensors, coolant pump malfunctions, and flow blockages. The core is a high-accuracy temperature estimation model, integrating a physics-based thermal model with a neural network, achieves a root mean square error of 0.39 °C and a maximum error of 1 °C under a US06 discharge and 6C charge at 15 °C. Tested on a 72-cell air-cooled pack, the method detects faults using only eight temperature sensors within 13 to 45 minutes, with zero false detections in 11 testing cycles. This approach enables early fault alerts, enhancing reliability and safety in electric vehicles.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"79"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037775/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermal fault detection of lithium-ion battery packs through an integrated physics and deep neural network based model.\",\"authors\":\"Mina Naguib, Junran Chen, Phillip Kollmeyer, Ali Emadi\",\"doi\":\"10.1038/s44172-025-00409-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Battery packs develop faults over time, many of which are difficult to detect early. For instance, cooling system blockages raises temperatures but may not trigger alerts until protection limits are exceeded. This work presents a model-based method for early thermal fault detection and identification in battery packs. By comparing measured and estimated temperatures, the method identifies faults including failed sensors, coolant pump malfunctions, and flow blockages. The core is a high-accuracy temperature estimation model, integrating a physics-based thermal model with a neural network, achieves a root mean square error of 0.39 °C and a maximum error of 1 °C under a US06 discharge and 6C charge at 15 °C. Tested on a 72-cell air-cooled pack, the method detects faults using only eight temperature sensors within 13 to 45 minutes, with zero false detections in 11 testing cycles. This approach enables early fault alerts, enhancing reliability and safety in electric vehicles.</p>\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\"4 1\",\"pages\":\"79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12037775/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44172-025-00409-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00409-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着时间的推移,电池组会出现故障,其中许多故障很难及早发现。例如,冷却系统堵塞会使温度升高,但在超过保护限度之前可能不会触发警报。本文提出了一种基于模型的电池包热故障早期检测与识别方法。通过比较测量温度和预估温度,该方法可以识别故障,包括传感器故障、冷却泵故障和流量堵塞。核心是一个高精度的温度估计模型,将基于物理的热模型与神经网络相结合,在US06放电和15°C下充电6C时,其均方根误差为0.39°C,最大误差为1°C。在一个有72个电池的风冷电池组上进行了测试,该方法仅使用8个温度传感器就能在13到45分钟内检测到故障,在11个测试周期中零错误检测。这种方法可以实现早期故障警报,提高电动汽车的可靠性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal fault detection of lithium-ion battery packs through an integrated physics and deep neural network based model.

Battery packs develop faults over time, many of which are difficult to detect early. For instance, cooling system blockages raises temperatures but may not trigger alerts until protection limits are exceeded. This work presents a model-based method for early thermal fault detection and identification in battery packs. By comparing measured and estimated temperatures, the method identifies faults including failed sensors, coolant pump malfunctions, and flow blockages. The core is a high-accuracy temperature estimation model, integrating a physics-based thermal model with a neural network, achieves a root mean square error of 0.39 °C and a maximum error of 1 °C under a US06 discharge and 6C charge at 15 °C. Tested on a 72-cell air-cooled pack, the method detects faults using only eight temperature sensors within 13 to 45 minutes, with zero false detections in 11 testing cycles. This approach enables early fault alerts, enhancing reliability and safety in electric vehicles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信