多组学分析揭示了控制四种不同西瓜果肉颜色表型的双重遗传位点。

IF 10.6 Q1 HORTICULTURE
Na Li, Shilai Xing, Gaofei Sun, Jianli Shang, Jia-Long Yao, Nannan Li, Dan Zhou, Yu Wang, Yuan Lu, Jinpeng Bi, Jiming Wang, Hongfeng Lu, Shuangwu Ma
{"title":"多组学分析揭示了控制四种不同西瓜果肉颜色表型的双重遗传位点。","authors":"Na Li, Shilai Xing, Gaofei Sun, Jianli Shang, Jia-Long Yao, Nannan Li, Dan Zhou, Yu Wang, Yuan Lu, Jinpeng Bi, Jiming Wang, Hongfeng Lu, Shuangwu Ma","doi":"10.1186/s43897-025-00166-y","DOIUrl":null,"url":null,"abstract":"<p><p>Watermelon fruit flesh displays various colors. Although genetic loci underlying these variations are identified, the molecular mechanism remains elusive. Here, we assembled a chromosome-scale reference genome of an elite watermelon and developed integrated genetic maps using single nucleotide polymorphism (SNP) and structural variation markers. Several key genetic varients for fruit shape and flesh color were identified. Two variants associated with flesh color were further studied, including one copy number variant (CNV, a triplicate of 1.2 kb DNA) in the promoter region of REDUCED CHLOROPLAST COVERAGE 2 (ClREC2) and one SNP in Lycopene β-Cyclase (ClLCYB) coding region. These two variants together explained 99.7% of the flesh color variations in 314 watermelon accessions. The SNP in ClLCYB was the same as previously reported, disrupting ClLCYB function. The CNV could strongly enhance ClREC2 expression, consequently increasing the expression of carotenoid biosynthesis genes, the number of plastoglobules within chromoplasts, and carotenoid level in mature fruit flesh. Finally, we proposed a \"two-switch\" genetic model by integrating two major causative loci, which can explain the formation of the four main flesh colors in different watermelon accessions. These results provide new insights into the regulation of carotenoid biosynthesis and color formation in plants.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"46"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077075/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-omics analyses unveil dual genetic loci governing four distinct watermelon flesh color phenotypes.\",\"authors\":\"Na Li, Shilai Xing, Gaofei Sun, Jianli Shang, Jia-Long Yao, Nannan Li, Dan Zhou, Yu Wang, Yuan Lu, Jinpeng Bi, Jiming Wang, Hongfeng Lu, Shuangwu Ma\",\"doi\":\"10.1186/s43897-025-00166-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Watermelon fruit flesh displays various colors. Although genetic loci underlying these variations are identified, the molecular mechanism remains elusive. Here, we assembled a chromosome-scale reference genome of an elite watermelon and developed integrated genetic maps using single nucleotide polymorphism (SNP) and structural variation markers. Several key genetic varients for fruit shape and flesh color were identified. Two variants associated with flesh color were further studied, including one copy number variant (CNV, a triplicate of 1.2 kb DNA) in the promoter region of REDUCED CHLOROPLAST COVERAGE 2 (ClREC2) and one SNP in Lycopene β-Cyclase (ClLCYB) coding region. These two variants together explained 99.7% of the flesh color variations in 314 watermelon accessions. The SNP in ClLCYB was the same as previously reported, disrupting ClLCYB function. The CNV could strongly enhance ClREC2 expression, consequently increasing the expression of carotenoid biosynthesis genes, the number of plastoglobules within chromoplasts, and carotenoid level in mature fruit flesh. Finally, we proposed a \\\"two-switch\\\" genetic model by integrating two major causative loci, which can explain the formation of the four main flesh colors in different watermelon accessions. These results provide new insights into the regulation of carotenoid biosynthesis and color formation in plants.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"5 1\",\"pages\":\"46\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077075/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-025-00166-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00166-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

西瓜果肉呈现出各种各样的颜色。虽然这些变异背后的基因位点已经确定,但分子机制仍然难以捉摸。在此,我们组装了一个优良西瓜的染色体尺度参考基因组,并利用单核苷酸多态性(SNP)和结构变异标记建立了综合遗传图谱。鉴定了几个决定果实形状和果肉颜色的关键遗传变异。进一步研究了两个与果肉颜色相关的变异,包括一个拷贝数变异(CNV,一个1.2 kb DNA的3个重复)在还原叶绿体覆盖2 (ClREC2)启动子区域和一个SNP在番茄红素β-环化酶(ClLCYB)编码区域。这两个变异共同解释了314份西瓜果肉颜色变异的99.7%。ClLCYB中的SNP与先前报道的相同,破坏了ClLCYB的功能。CNV能强烈增强ClREC2的表达,从而增加成熟果肉中类胡萝卜素生物合成基因的表达、染色质内质体红蛋白的数量和类胡萝卜素水平。最后,我们提出了一个整合两个主要致病位点的“双开关”遗传模型,该模型可以解释不同西瓜材料中四种主要果肉颜色的形成。这些结果为植物类胡萝卜素生物合成和颜色形成的调控提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-omics analyses unveil dual genetic loci governing four distinct watermelon flesh color phenotypes.

Watermelon fruit flesh displays various colors. Although genetic loci underlying these variations are identified, the molecular mechanism remains elusive. Here, we assembled a chromosome-scale reference genome of an elite watermelon and developed integrated genetic maps using single nucleotide polymorphism (SNP) and structural variation markers. Several key genetic varients for fruit shape and flesh color were identified. Two variants associated with flesh color were further studied, including one copy number variant (CNV, a triplicate of 1.2 kb DNA) in the promoter region of REDUCED CHLOROPLAST COVERAGE 2 (ClREC2) and one SNP in Lycopene β-Cyclase (ClLCYB) coding region. These two variants together explained 99.7% of the flesh color variations in 314 watermelon accessions. The SNP in ClLCYB was the same as previously reported, disrupting ClLCYB function. The CNV could strongly enhance ClREC2 expression, consequently increasing the expression of carotenoid biosynthesis genes, the number of plastoglobules within chromoplasts, and carotenoid level in mature fruit flesh. Finally, we proposed a "two-switch" genetic model by integrating two major causative loci, which can explain the formation of the four main flesh colors in different watermelon accessions. These results provide new insights into the regulation of carotenoid biosynthesis and color formation in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信