晚期糖基化终产物改变了腹膜内胶原的结构完整性,增加了通透性并改变了其生物相容性。

IF 3.4 3区 生物学 Q3 CELL BIOLOGY
Makoto Fukuda, Yusuke Chiwata, Takayuki Narita, Maki Yoshihara, Hiroyuki Morimoto, Ayako Takamori, Shota Shibuki, Rinko Hinami, Ayano Ishibashi, Akinori Nagashima, Motoaki Miyazono, Shigehisa Aoki
{"title":"晚期糖基化终产物改变了腹膜内胶原的结构完整性,增加了通透性并改变了其生物相容性。","authors":"Makoto Fukuda, Yusuke Chiwata, Takayuki Narita, Maki Yoshihara, Hiroyuki Morimoto, Ayako Takamori, Shota Shibuki, Rinko Hinami, Ayano Ishibashi, Akinori Nagashima, Motoaki Miyazono, Shigehisa Aoki","doi":"10.1007/s13577-025-01229-4","DOIUrl":null,"url":null,"abstract":"<p><p>In patients undergoing long-term peritoneal dialysis, the peritoneal accumulation of advanced glycation end-products (AGEs) due to the Maillard reaction has long been acknowledged as problematic, although the underlying mechanisms remain insufficiently understood. Recognizing collagen as both a principal substrate for AGEs deposition and a vital cellular scaffold, we developed an innovative procedure that induces the Maillard reaction in collagen at near-physiological temperatures, enabling systematic evaluations of its structural and functional modifications. Our findings reveal that Maillard reaction-treated collagen exhibits markedly increased permeability to small- and medium-sized molecules. Furthermore, this denatured collagen diminishes the proliferative capacity of adherent mesothelial cells, implicating glycation-induced alterations in collagen in the progressive deterioration of peritoneal membrane function during extended dialysis. By illuminating previously uncharacterized morphological and functional shifts in collagen triggered by the Maillard reaction, our model provides critical insights that will enhance the safety of peritoneal dialysis and inform the development of novel therapeutic strategies.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 4","pages":"99"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced glycation end products alter the structural integrity, increase the permeability and transform the biocompatibility of collagen within the peritoneal membrane.\",\"authors\":\"Makoto Fukuda, Yusuke Chiwata, Takayuki Narita, Maki Yoshihara, Hiroyuki Morimoto, Ayako Takamori, Shota Shibuki, Rinko Hinami, Ayano Ishibashi, Akinori Nagashima, Motoaki Miyazono, Shigehisa Aoki\",\"doi\":\"10.1007/s13577-025-01229-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In patients undergoing long-term peritoneal dialysis, the peritoneal accumulation of advanced glycation end-products (AGEs) due to the Maillard reaction has long been acknowledged as problematic, although the underlying mechanisms remain insufficiently understood. Recognizing collagen as both a principal substrate for AGEs deposition and a vital cellular scaffold, we developed an innovative procedure that induces the Maillard reaction in collagen at near-physiological temperatures, enabling systematic evaluations of its structural and functional modifications. Our findings reveal that Maillard reaction-treated collagen exhibits markedly increased permeability to small- and medium-sized molecules. Furthermore, this denatured collagen diminishes the proliferative capacity of adherent mesothelial cells, implicating glycation-induced alterations in collagen in the progressive deterioration of peritoneal membrane function during extended dialysis. By illuminating previously uncharacterized morphological and functional shifts in collagen triggered by the Maillard reaction, our model provides critical insights that will enhance the safety of peritoneal dialysis and inform the development of novel therapeutic strategies.</p>\",\"PeriodicalId\":49194,\"journal\":{\"name\":\"Human Cell\",\"volume\":\"38 4\",\"pages\":\"99\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13577-025-01229-4\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01229-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在接受长期腹膜透析的患者中,由于美拉德反应导致的晚期糖基化终产物(AGEs)的腹膜积累一直被认为是一个问题,尽管其潜在的机制仍未得到充分的了解。认识到胶原既是AGEs沉积的主要底物,也是重要的细胞支架,我们开发了一种创新的方法,在接近生理温度下诱导胶原中的美拉德反应,从而能够系统地评估其结构和功能修饰。我们的研究结果表明,美拉德反应处理的胶原蛋白对中小分子的渗透性明显增加。此外,变性胶原降低了粘附间皮细胞的增殖能力,暗示糖基化诱导的胶原改变与延长透析期间腹膜功能的进行性恶化有关。通过阐明由美拉德反应引发的胶原蛋白先前未表征的形态和功能变化,我们的模型提供了重要的见解,将提高腹膜透析的安全性,并为开发新的治疗策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced glycation end products alter the structural integrity, increase the permeability and transform the biocompatibility of collagen within the peritoneal membrane.

In patients undergoing long-term peritoneal dialysis, the peritoneal accumulation of advanced glycation end-products (AGEs) due to the Maillard reaction has long been acknowledged as problematic, although the underlying mechanisms remain insufficiently understood. Recognizing collagen as both a principal substrate for AGEs deposition and a vital cellular scaffold, we developed an innovative procedure that induces the Maillard reaction in collagen at near-physiological temperatures, enabling systematic evaluations of its structural and functional modifications. Our findings reveal that Maillard reaction-treated collagen exhibits markedly increased permeability to small- and medium-sized molecules. Furthermore, this denatured collagen diminishes the proliferative capacity of adherent mesothelial cells, implicating glycation-induced alterations in collagen in the progressive deterioration of peritoneal membrane function during extended dialysis. By illuminating previously uncharacterized morphological and functional shifts in collagen triggered by the Maillard reaction, our model provides critical insights that will enhance the safety of peritoneal dialysis and inform the development of novel therapeutic strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信