Felipe Velasquez Moros, Dorian Amiet, Rachel M Meister, Alexandra von Faber-Castell, Matthias Wyss, Aiman S Saab, Paul Zbinden, Bruno Weber, Luca Ravotto
{"title":"一种基于fpga的低成本堆积校正高速体内FLIM成像方法。","authors":"Felipe Velasquez Moros, Dorian Amiet, Rachel M Meister, Alexandra von Faber-Castell, Matthias Wyss, Aiman S Saab, Paul Zbinden, Bruno Weber, Luca Ravotto","doi":"10.1117/1.NPh.12.2.025009","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from \"pile-up\" distortions at high photon count rates, severely limiting acquisition speed.</p><p><strong>Aim: </strong>We introduce the \"laser period blind time\" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates.</p><p><strong>Approach: </strong>Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance <i>in silico</i>. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using <i>in vitro</i>, <i>ex vivo</i>, and <i>in vivo</i> measurements.</p><p><strong>Results: </strong>The LBPT approach achieves <math><mrow><mo><</mo> <mn>3</mn> <mo>%</mo></mrow> </math> error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution.</p><p><strong>Conclusions: </strong>We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 2","pages":"025009"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052397/pdf/","citationCount":"0","resultStr":"{\"title\":\"A low-cost FPGA-based approach for pile-up corrected high-speed <i>in vivo</i> FLIM imaging.\",\"authors\":\"Felipe Velasquez Moros, Dorian Amiet, Rachel M Meister, Alexandra von Faber-Castell, Matthias Wyss, Aiman S Saab, Paul Zbinden, Bruno Weber, Luca Ravotto\",\"doi\":\"10.1117/1.NPh.12.2.025009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from \\\"pile-up\\\" distortions at high photon count rates, severely limiting acquisition speed.</p><p><strong>Aim: </strong>We introduce the \\\"laser period blind time\\\" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates.</p><p><strong>Approach: </strong>Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance <i>in silico</i>. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using <i>in vitro</i>, <i>ex vivo</i>, and <i>in vivo</i> measurements.</p><p><strong>Results: </strong>The LBPT approach achieves <math><mrow><mo><</mo> <mn>3</mn> <mo>%</mo></mrow> </math> error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution.</p><p><strong>Conclusions: </strong>We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.</p>\",\"PeriodicalId\":54335,\"journal\":{\"name\":\"Neurophotonics\",\"volume\":\"12 2\",\"pages\":\"025009\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12052397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurophotonics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.NPh.12.2.025009\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.2.025009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A low-cost FPGA-based approach for pile-up corrected high-speed in vivo FLIM imaging.
Significance: Intensity-based two-photon microscopy is a cornerstone of neuroscience research but lacks the ability to measure concentrations, a pivotal task for longitudinal studies and quantitative comparisons. Fluorescence lifetime imaging (FLIM) based on time-correlated single photon counting (TCSPC) can overcome those limits but suffers from "pile-up" distortions at high photon count rates, severely limiting acquisition speed.
Aim: We introduce the "laser period blind time" (LPBT) method to correct pile-up distortions in photon counting electronics, enabling reliable low-cost TCSPC-FLIM at high count rates.
Approach: Using a realistic simulation of the TCSPC data collection, we evaluated the LPBT method's performance in silico. The correction was then implemented on low-cost hardware based on a field programable gate array and validated using in vitro, ex vivo, and in vivo measurements.
Results: The LBPT approach achieves error in lifetime measurements at count rates more than 10 times higher than traditional limits, allowing robust FLIM imaging of subsecond metabolite dynamics with subcellular resolution.
Conclusions: We enable high-precision, cost-effective FLIM imaging at acquisition speeds comparable with state-of-the-art commercial systems, facilitating the adoption of FLIM in neuroscience and other fields of research needing robust quantitative live imaging solutions.
期刊介绍:
At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.