{"title":"模拟最佳气候驱动的疟疾传播控制策略以优化津巴布韦Mberengwa地区的疟疾管理:一项多方法研究协议。","authors":"Tafadzwa Chivasa, Mlamuli Dhlamini, Auther Maviza, Wilfred Njabulo Nunu, Joyce Tsoka-Gwegweni","doi":"10.3390/ijerph22040591","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria is a persistent public health problem, particularly in sub-Saharan Africa where its transmission is intricately linked to climatic factors. Climate change threatens malaria elimination efforts in limited resource settings, such as in the Mberengwa district. However, the role of climate change in malaria transmission and management has not been adequately quantified to inform interventions. This protocol employs a multi-method quantitative study design in four steps, starting with a scoping review of the literature, followed by a multi-method quantitative approach using geospatial analysis, a quantitative survey, and the development of a predictive Susceptible-Exposed-Infected-Recovered-Susceptible-Geographic Information System model to explore the link between climate change and malaria transmission in the Mberengwa district. Geospatial overlay, Getis-Ord Gi* spatial autocorrelation, and spatial linear regression will be applied to climate (temperature, rainfall, and humidity), environmental (Land Use-Land Cover, elevations, proximity to water bodies, and Normalised Difference Vegetation Index), and socio-economic (Poverty Levels and Population Density) data to provide a comprehensive understanding of the spatial distribution of malaria in Mberengwa District. The predictive model will utilise historical data from two decades (2003-2023) to simulate near- and mid-century malaria transmission patterns. The findings of this study will be used to inform policies and optimise the management of malaria in the context of climate change.</p>","PeriodicalId":49056,"journal":{"name":"International Journal of Environmental Research and Public Health","volume":"22 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027159/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modelling an Optimal Climate-Driven Malaria Transmission Control Strategy to Optimise the Management of Malaria in Mberengwa District, Zimbabwe: A Multi-Method Study Protocol.\",\"authors\":\"Tafadzwa Chivasa, Mlamuli Dhlamini, Auther Maviza, Wilfred Njabulo Nunu, Joyce Tsoka-Gwegweni\",\"doi\":\"10.3390/ijerph22040591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malaria is a persistent public health problem, particularly in sub-Saharan Africa where its transmission is intricately linked to climatic factors. Climate change threatens malaria elimination efforts in limited resource settings, such as in the Mberengwa district. However, the role of climate change in malaria transmission and management has not been adequately quantified to inform interventions. This protocol employs a multi-method quantitative study design in four steps, starting with a scoping review of the literature, followed by a multi-method quantitative approach using geospatial analysis, a quantitative survey, and the development of a predictive Susceptible-Exposed-Infected-Recovered-Susceptible-Geographic Information System model to explore the link between climate change and malaria transmission in the Mberengwa district. Geospatial overlay, Getis-Ord Gi* spatial autocorrelation, and spatial linear regression will be applied to climate (temperature, rainfall, and humidity), environmental (Land Use-Land Cover, elevations, proximity to water bodies, and Normalised Difference Vegetation Index), and socio-economic (Poverty Levels and Population Density) data to provide a comprehensive understanding of the spatial distribution of malaria in Mberengwa District. The predictive model will utilise historical data from two decades (2003-2023) to simulate near- and mid-century malaria transmission patterns. The findings of this study will be used to inform policies and optimise the management of malaria in the context of climate change.</p>\",\"PeriodicalId\":49056,\"journal\":{\"name\":\"International Journal of Environmental Research and Public Health\",\"volume\":\"22 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research and Public Health\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/ijerph22040591\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research and Public Health","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/ijerph22040591","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling an Optimal Climate-Driven Malaria Transmission Control Strategy to Optimise the Management of Malaria in Mberengwa District, Zimbabwe: A Multi-Method Study Protocol.
Malaria is a persistent public health problem, particularly in sub-Saharan Africa where its transmission is intricately linked to climatic factors. Climate change threatens malaria elimination efforts in limited resource settings, such as in the Mberengwa district. However, the role of climate change in malaria transmission and management has not been adequately quantified to inform interventions. This protocol employs a multi-method quantitative study design in four steps, starting with a scoping review of the literature, followed by a multi-method quantitative approach using geospatial analysis, a quantitative survey, and the development of a predictive Susceptible-Exposed-Infected-Recovered-Susceptible-Geographic Information System model to explore the link between climate change and malaria transmission in the Mberengwa district. Geospatial overlay, Getis-Ord Gi* spatial autocorrelation, and spatial linear regression will be applied to climate (temperature, rainfall, and humidity), environmental (Land Use-Land Cover, elevations, proximity to water bodies, and Normalised Difference Vegetation Index), and socio-economic (Poverty Levels and Population Density) data to provide a comprehensive understanding of the spatial distribution of malaria in Mberengwa District. The predictive model will utilise historical data from two decades (2003-2023) to simulate near- and mid-century malaria transmission patterns. The findings of this study will be used to inform policies and optimise the management of malaria in the context of climate change.
期刊介绍:
International Journal of Environmental Research and Public Health (IJERPH) (ISSN 1660-4601) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes, and short communications in the interdisciplinary area of environmental health sciences and public health. It links several scientific disciplines including biology, biochemistry, biotechnology, cellular and molecular biology, chemistry, computer science, ecology, engineering, epidemiology, genetics, immunology, microbiology, oncology, pathology, pharmacology, and toxicology, in an integrated fashion, to address critical issues related to environmental quality and public health. Therefore, IJERPH focuses on the publication of scientific and technical information on the impacts of natural phenomena and anthropogenic factors on the quality of our environment, the interrelationships between environmental health and the quality of life, as well as the socio-cultural, political, economic, and legal considerations related to environmental stewardship and public health.
The 2018 IJERPH Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJERPH. See full details at http://www.mdpi.com/journal/ijerph/awards.