Zur在蓝细菌(synnechocystis sp. PCC 6803)金属离子稳态、运动和多重胁迫抗性中的功能研究。

IF 5.8
Han Jin, Xiaoru Han, Chen Zheng, Jingling Xu, Wenjing Zhang, Yanchao Gu, Ying Peng, Jiaxin Han, Lei Xu, Xihui Shen, Yantao Yang
{"title":"Zur在蓝细菌(synnechocystis sp. PCC 6803)金属离子稳态、运动和多重胁迫抗性中的功能研究。","authors":"Han Jin, Xiaoru Han, Chen Zheng, Jingling Xu, Wenjing Zhang, Yanchao Gu, Ying Peng, Jiaxin Han, Lei Xu, Xihui Shen, Yantao Yang","doi":"10.1007/s44154-025-00224-x","DOIUrl":null,"url":null,"abstract":"<p><p>Zur (zinc uptake regulator), a member of the Fur (ferric uptake regulator) family of transcriptional regulators, plays multifaceted roles by regulating the gene expressions, such as modulating zinc ion uptake by regulating the znuABC gene cluster and influencing bacterial motility by modulating genes associated with flagella or pili. The photosynthetic autotroph Synechocystis sp. PCC 6803 is frequently used as an indicator organism for water pollution and a cell factory for high-value biochemical production in synthetic biology. During its growth, this organism often encounters various abiotic stresses, including oxidative, salt, and antibiotic stress. In this study, we conducted transcriptomic analysis on both Δzur mutant and wild-type (WT) strains to identify potential Zur-regulated genes in Synechocystis sp. PCC 6803. These genes primarily participate in multiple pathways such as inorganic ion transport, carbohydrate transport, energy production and conversion, and cell motility. Zur not only controls zinc ion homeostasis within the cell but also influences the iron balance by directly regulating the expression of the fur gene. In terms of motility, Zur regulates the expression of bacterial pili gene cluster and other motility-related genes, thereby affecting the twitching motility of Synechocystis sp. PCC 6803. Furthermore, Zur plays a crucial role in promoting biofilm formation and enhancing resistance to salt, oxidative, and antibiotic stresses by modulating relative gene expression. In conclusion, as a global transcriptional regulator, Zur plays pivotal roles in metal ion homeostasis, motility, and resistance to multiple stresses in Synechocystis sp. PCC 6803. This study illustrates the Zur regulons in Synechocystis sp. PCC 6803, and underscores the importance of Zur in enhancing the environmental adaptability of cyanobacteria.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"32"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058595/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional investigation of Zur in metal ion homeostasis, motility and multiple stresses resistance in cyanobacteria Synechocystis sp. PCC 6803.\",\"authors\":\"Han Jin, Xiaoru Han, Chen Zheng, Jingling Xu, Wenjing Zhang, Yanchao Gu, Ying Peng, Jiaxin Han, Lei Xu, Xihui Shen, Yantao Yang\",\"doi\":\"10.1007/s44154-025-00224-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zur (zinc uptake regulator), a member of the Fur (ferric uptake regulator) family of transcriptional regulators, plays multifaceted roles by regulating the gene expressions, such as modulating zinc ion uptake by regulating the znuABC gene cluster and influencing bacterial motility by modulating genes associated with flagella or pili. The photosynthetic autotroph Synechocystis sp. PCC 6803 is frequently used as an indicator organism for water pollution and a cell factory for high-value biochemical production in synthetic biology. During its growth, this organism often encounters various abiotic stresses, including oxidative, salt, and antibiotic stress. In this study, we conducted transcriptomic analysis on both Δzur mutant and wild-type (WT) strains to identify potential Zur-regulated genes in Synechocystis sp. PCC 6803. These genes primarily participate in multiple pathways such as inorganic ion transport, carbohydrate transport, energy production and conversion, and cell motility. Zur not only controls zinc ion homeostasis within the cell but also influences the iron balance by directly regulating the expression of the fur gene. In terms of motility, Zur regulates the expression of bacterial pili gene cluster and other motility-related genes, thereby affecting the twitching motility of Synechocystis sp. PCC 6803. Furthermore, Zur plays a crucial role in promoting biofilm formation and enhancing resistance to salt, oxidative, and antibiotic stresses by modulating relative gene expression. In conclusion, as a global transcriptional regulator, Zur plays pivotal roles in metal ion homeostasis, motility, and resistance to multiple stresses in Synechocystis sp. PCC 6803. This study illustrates the Zur regulons in Synechocystis sp. PCC 6803, and underscores the importance of Zur in enhancing the environmental adaptability of cyanobacteria.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"32\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058595/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00224-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00224-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Zur(锌摄取调节剂)是Fur(铁摄取调节剂)转录调控家族的一员,通过调控基因表达发挥多方面的作用,如通过调控znuABC基因簇调控锌离子摄取,通过调控鞭毛或毛相关基因影响细菌运动。光合自养生物聚胞藻(Synechocystis sp. PCC 6803)是合成生物学中常用的水污染指示生物和高价值生化生产的细胞工厂。在其生长过程中,这种生物经常遇到各种非生物应激,包括氧化应激、盐应激和抗生素应激。在这项研究中,我们对Δzur突变株和野生型(WT)菌株进行转录组学分析,以确定Synechocystis sp. PCC 6803中潜在的zul调控基因。这些基因主要参与多种途径,如无机离子运输、碳水化合物运输、能量产生和转化以及细胞运动。Zur不仅控制细胞内锌离子的稳态,还通过直接调节fur基因的表达影响铁的平衡。在运动性方面,Zur调节细菌毛基因簇和其他运动性相关基因的表达,从而影响Synechocystis sp. PCC 6803的抽搐运动性。此外,Zur通过调节相关基因的表达,在促进生物膜的形成和增强对盐、氧化和抗生素胁迫的抗性方面起着至关重要的作用。综上所述,作为一个全球性的转录调控因子,Zur在Synechocystis sp. PCC 6803的金属离子稳态、运动和多重胁迫抗性中起着关键作用。本研究阐明了Synechocystis sp. PCC 6803中Zur的调控,强调了Zur在提高蓝藻环境适应性中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional investigation of Zur in metal ion homeostasis, motility and multiple stresses resistance in cyanobacteria Synechocystis sp. PCC 6803.

Zur (zinc uptake regulator), a member of the Fur (ferric uptake regulator) family of transcriptional regulators, plays multifaceted roles by regulating the gene expressions, such as modulating zinc ion uptake by regulating the znuABC gene cluster and influencing bacterial motility by modulating genes associated with flagella or pili. The photosynthetic autotroph Synechocystis sp. PCC 6803 is frequently used as an indicator organism for water pollution and a cell factory for high-value biochemical production in synthetic biology. During its growth, this organism often encounters various abiotic stresses, including oxidative, salt, and antibiotic stress. In this study, we conducted transcriptomic analysis on both Δzur mutant and wild-type (WT) strains to identify potential Zur-regulated genes in Synechocystis sp. PCC 6803. These genes primarily participate in multiple pathways such as inorganic ion transport, carbohydrate transport, energy production and conversion, and cell motility. Zur not only controls zinc ion homeostasis within the cell but also influences the iron balance by directly regulating the expression of the fur gene. In terms of motility, Zur regulates the expression of bacterial pili gene cluster and other motility-related genes, thereby affecting the twitching motility of Synechocystis sp. PCC 6803. Furthermore, Zur plays a crucial role in promoting biofilm formation and enhancing resistance to salt, oxidative, and antibiotic stresses by modulating relative gene expression. In conclusion, as a global transcriptional regulator, Zur plays pivotal roles in metal ion homeostasis, motility, and resistance to multiple stresses in Synechocystis sp. PCC 6803. This study illustrates the Zur regulons in Synechocystis sp. PCC 6803, and underscores the importance of Zur in enhancing the environmental adaptability of cyanobacteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信