Anshul Singh, Sheersha Pramanik, Ammar Kadi, Bassam M Abualsoud, Manisha Singh, Mohammad Javed Ansari, Abdelwahab Omri, A Deepak, Pankaj Nainwal, Stefano Bellucci
{"title":"壳聚糖纳米颗粒:跨多种途径的药物输送和伤口愈合的多功能前沿。","authors":"Anshul Singh, Sheersha Pramanik, Ammar Kadi, Bassam M Abualsoud, Manisha Singh, Mohammad Javed Ansari, Abdelwahab Omri, A Deepak, Pankaj Nainwal, Stefano Bellucci","doi":"10.1088/1748-605X/add3e6","DOIUrl":null,"url":null,"abstract":"<p><p>The domain of nanoscience has observed significant advancements over the former two decades. Researchers in nanomedicine field have been rigorously exploring the employment of natural biodegradable polymers for targeted drug delivery (TDD). Chitosan (CS), acquired from the deacetylation of chitin, is a naturally occurring amino polysaccharide, whose features of non-toxicity, prolonged retention time, biocompatibility, increased bioavailability, and biodegradability have hastened extensive study into diverse applications. The presence of amino and hydroxyl groups within CS is crucial for its noteworthy characteristics, comprising mucoadhesion, improvement of permeation, drug's-controlled release,<i>in situ</i>gel preparation, and antimicrobial activity. CS nanoparticles (CS NPs) portray a safe and competent class of nanocarrier systems, demonstrating the controlled release of drugs and preciseness in TDD, and are found hopeful for treating wounds. However, safety concerns such as potential toxicity, immune response, and hemocompatibility must be carefully evaluated to ensure their suitability for clinical applications. This article explores the potential of CS NPs as versatile carriers for TDD, reporting essential challenges in both therapeutic domains, and progressing the advancement of innovative treatments. By connecting drug delivery and wound healing, our review addresses a critical convergence, fostering developments that can certainly affect treatment and recovery of patient. The initial part of the review will shed light on the extraction sources and notable attributes of CS. Additionally, we have presented recent research findings on how CS NPs are being utilized for drug delivery via different routes of administration. Further, we have endeavored to represent the latest investigations on the applications of CS NPs in wound healing.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan nanoparticles: a versatile frontier in drug delivery and wound healing across multiple routes.\",\"authors\":\"Anshul Singh, Sheersha Pramanik, Ammar Kadi, Bassam M Abualsoud, Manisha Singh, Mohammad Javed Ansari, Abdelwahab Omri, A Deepak, Pankaj Nainwal, Stefano Bellucci\",\"doi\":\"10.1088/1748-605X/add3e6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The domain of nanoscience has observed significant advancements over the former two decades. Researchers in nanomedicine field have been rigorously exploring the employment of natural biodegradable polymers for targeted drug delivery (TDD). Chitosan (CS), acquired from the deacetylation of chitin, is a naturally occurring amino polysaccharide, whose features of non-toxicity, prolonged retention time, biocompatibility, increased bioavailability, and biodegradability have hastened extensive study into diverse applications. The presence of amino and hydroxyl groups within CS is crucial for its noteworthy characteristics, comprising mucoadhesion, improvement of permeation, drug's-controlled release,<i>in situ</i>gel preparation, and antimicrobial activity. CS nanoparticles (CS NPs) portray a safe and competent class of nanocarrier systems, demonstrating the controlled release of drugs and preciseness in TDD, and are found hopeful for treating wounds. However, safety concerns such as potential toxicity, immune response, and hemocompatibility must be carefully evaluated to ensure their suitability for clinical applications. This article explores the potential of CS NPs as versatile carriers for TDD, reporting essential challenges in both therapeutic domains, and progressing the advancement of innovative treatments. By connecting drug delivery and wound healing, our review addresses a critical convergence, fostering developments that can certainly affect treatment and recovery of patient. The initial part of the review will shed light on the extraction sources and notable attributes of CS. Additionally, we have presented recent research findings on how CS NPs are being utilized for drug delivery via different routes of administration. Further, we have endeavored to represent the latest investigations on the applications of CS NPs in wound healing.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/add3e6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/add3e6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chitosan nanoparticles: a versatile frontier in drug delivery and wound healing across multiple routes.
The domain of nanoscience has observed significant advancements over the former two decades. Researchers in nanomedicine field have been rigorously exploring the employment of natural biodegradable polymers for targeted drug delivery (TDD). Chitosan (CS), acquired from the deacetylation of chitin, is a naturally occurring amino polysaccharide, whose features of non-toxicity, prolonged retention time, biocompatibility, increased bioavailability, and biodegradability have hastened extensive study into diverse applications. The presence of amino and hydroxyl groups within CS is crucial for its noteworthy characteristics, comprising mucoadhesion, improvement of permeation, drug's-controlled release,in situgel preparation, and antimicrobial activity. CS nanoparticles (CS NPs) portray a safe and competent class of nanocarrier systems, demonstrating the controlled release of drugs and preciseness in TDD, and are found hopeful for treating wounds. However, safety concerns such as potential toxicity, immune response, and hemocompatibility must be carefully evaluated to ensure their suitability for clinical applications. This article explores the potential of CS NPs as versatile carriers for TDD, reporting essential challenges in both therapeutic domains, and progressing the advancement of innovative treatments. By connecting drug delivery and wound healing, our review addresses a critical convergence, fostering developments that can certainly affect treatment and recovery of patient. The initial part of the review will shed light on the extraction sources and notable attributes of CS. Additionally, we have presented recent research findings on how CS NPs are being utilized for drug delivery via different routes of administration. Further, we have endeavored to represent the latest investigations on the applications of CS NPs in wound healing.