taxmphage: dsDNA噬菌体基因组在属和种水平上的自动分类。

PHAGE (New Rochelle, N.Y.) Pub Date : 2025-03-17 eCollection Date: 2025-03-01 DOI:10.1089/phage.2024.0050
Andrew Millard, Rémi Denise, Maria Lestido, Moi Taiga Thomas, Deven Webster, Dann Turner, Thomas Sicheritz-Pontén
{"title":"taxmphage: dsDNA噬菌体基因组在属和种水平上的自动分类。","authors":"Andrew Millard, Rémi Denise, Maria Lestido, Moi Taiga Thomas, Deven Webster, Dann Turner, Thomas Sicheritz-Pontén","doi":"10.1089/phage.2024.0050","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bacteriophages are classified into genera and species based on genomic similarity, a process regulated by the International Committee on the Taxonomy of Viruses. With the rapid increase in phage genomic data there is a growing need for automated classification systems that can handle large-scale genome analyses and place phages into new or existing genera and species.</p><p><strong>Materials and methods: </strong>We developed <i>taxMyPhage</i>, a tool system for the rapid automated classification of dsDNA bacteriophage genomes. The system integrates a MASH database, built from ICTV-classified phage genomes to identify closely related phages, followed by BLASTn to calculate intergenomic similarity, conforming to ICTV guidelines for genus and species classification. taxMyPhage is available as a git repository at https://github.com/amillard/tax_myPHAGE, a conda package, a pip-installable tool, and a web service at https://phagecompass.ku.dk.</p><p><strong>Results: </strong><i>taxMyPhage</i> enables rapid classification of bacteriophages to the genus and species level. Benchmarking on 705 genomes pending ICTV classification showed a 96.7% accuracy at the genus level and 97.9% accuracy at the species level. The system also detected inconsistencies in current ICTV classifications, identifying cases where genera did not adhere to ICTV's 70% average nucleotide identity (ANI) threshold for genus classification or 95% ANI for species. The command line version classified 705 genomes within 48 h, demonstrating its scalability for large datasets.</p><p><strong>Conclusions: </strong><i>taxMyPhage</i> significantly enhances the speed and accuracy of bacteriophage genome classification at the genus and species levels, making it compatible with current sequencing outputs. The tool facilitates the integration of bacteriophage classification into standard workflows, thereby accelerating research and ensuring consistent taxonomy.</p>","PeriodicalId":74428,"journal":{"name":"PHAGE (New Rochelle, N.Y.)","volume":"6 1","pages":"5-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060842/pdf/","citationCount":"0","resultStr":"{\"title\":\"taxMyPhage: Automated Taxonomy of dsDNA Phage Genomes at the Genus and Species Level.\",\"authors\":\"Andrew Millard, Rémi Denise, Maria Lestido, Moi Taiga Thomas, Deven Webster, Dann Turner, Thomas Sicheritz-Pontén\",\"doi\":\"10.1089/phage.2024.0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Bacteriophages are classified into genera and species based on genomic similarity, a process regulated by the International Committee on the Taxonomy of Viruses. With the rapid increase in phage genomic data there is a growing need for automated classification systems that can handle large-scale genome analyses and place phages into new or existing genera and species.</p><p><strong>Materials and methods: </strong>We developed <i>taxMyPhage</i>, a tool system for the rapid automated classification of dsDNA bacteriophage genomes. The system integrates a MASH database, built from ICTV-classified phage genomes to identify closely related phages, followed by BLASTn to calculate intergenomic similarity, conforming to ICTV guidelines for genus and species classification. taxMyPhage is available as a git repository at https://github.com/amillard/tax_myPHAGE, a conda package, a pip-installable tool, and a web service at https://phagecompass.ku.dk.</p><p><strong>Results: </strong><i>taxMyPhage</i> enables rapid classification of bacteriophages to the genus and species level. Benchmarking on 705 genomes pending ICTV classification showed a 96.7% accuracy at the genus level and 97.9% accuracy at the species level. The system also detected inconsistencies in current ICTV classifications, identifying cases where genera did not adhere to ICTV's 70% average nucleotide identity (ANI) threshold for genus classification or 95% ANI for species. The command line version classified 705 genomes within 48 h, demonstrating its scalability for large datasets.</p><p><strong>Conclusions: </strong><i>taxMyPhage</i> significantly enhances the speed and accuracy of bacteriophage genome classification at the genus and species levels, making it compatible with current sequencing outputs. The tool facilitates the integration of bacteriophage classification into standard workflows, thereby accelerating research and ensuring consistent taxonomy.</p>\",\"PeriodicalId\":74428,\"journal\":{\"name\":\"PHAGE (New Rochelle, N.Y.)\",\"volume\":\"6 1\",\"pages\":\"5-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12060842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHAGE (New Rochelle, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/phage.2024.0050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHAGE (New Rochelle, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/phage.2024.0050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:噬菌体根据基因组相似性分为属和种,这一过程由国际病毒分类学委员会规定。随着噬菌体基因组数据的快速增长,人们越来越需要能够处理大规模基因组分析并将噬菌体放入新的或现有的属和种的自动分类系统。材料和方法:我们开发了taxMyPhage,一个用于快速自动分类dsDNA噬菌体基因组的工具系统。该系统集成了基于ICTV分类噬菌体基因组构建的MASH数据库,用于鉴定密切相关的噬菌体,然后使用BLASTn计算基因组间相似性,符合ICTV属和种分类指南。taxMyPhage可以通过以下方式获得:git存储库https://github.com/amillard/tax_myPHAGE、conda包、可pip安装的工具和web服务https://phagecompass.ku.dk.Results: taxMyPhage可以将噬菌体快速分类到属和种级别。对705个待ICTV分类的基因组进行基准测试,在属水平上的准确率为96.7%,在种水平上的准确率为97.9%。该系统还检测到当前ICTV分类中的不一致性,识别出属不符合ICTV属分类70%的平均核苷酸同一性(ANI)阈值或种95% ANI阈值的情况。命令行版本在48小时内分类了705个基因组,证明了它对大型数据集的可扩展性。结论:taxMyPhage显著提高了噬菌体基因组在属和种水平上分类的速度和准确性,与目前的测序结果相兼容。该工具有助于将噬菌体分类整合到标准工作流程中,从而加速研究并确保分类的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
taxMyPhage: Automated Taxonomy of dsDNA Phage Genomes at the Genus and Species Level.

Background: Bacteriophages are classified into genera and species based on genomic similarity, a process regulated by the International Committee on the Taxonomy of Viruses. With the rapid increase in phage genomic data there is a growing need for automated classification systems that can handle large-scale genome analyses and place phages into new or existing genera and species.

Materials and methods: We developed taxMyPhage, a tool system for the rapid automated classification of dsDNA bacteriophage genomes. The system integrates a MASH database, built from ICTV-classified phage genomes to identify closely related phages, followed by BLASTn to calculate intergenomic similarity, conforming to ICTV guidelines for genus and species classification. taxMyPhage is available as a git repository at https://github.com/amillard/tax_myPHAGE, a conda package, a pip-installable tool, and a web service at https://phagecompass.ku.dk.

Results: taxMyPhage enables rapid classification of bacteriophages to the genus and species level. Benchmarking on 705 genomes pending ICTV classification showed a 96.7% accuracy at the genus level and 97.9% accuracy at the species level. The system also detected inconsistencies in current ICTV classifications, identifying cases where genera did not adhere to ICTV's 70% average nucleotide identity (ANI) threshold for genus classification or 95% ANI for species. The command line version classified 705 genomes within 48 h, demonstrating its scalability for large datasets.

Conclusions: taxMyPhage significantly enhances the speed and accuracy of bacteriophage genome classification at the genus and species levels, making it compatible with current sequencing outputs. The tool facilitates the integration of bacteriophage classification into standard workflows, thereby accelerating research and ensuring consistent taxonomy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信