机器学习预测放射治疗口咽癌患者急性疼痛和阿片类药物剂量。

IF 2.5 Q2 CLINICAL NEUROLOGY
Frontiers in pain research (Lausanne, Switzerland) Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI:10.3389/fpain.2025.1567632
Vivian Salama, Laia Humbert-Vidan, Brandon Godinich, Kareem A Wahid, Dina M ElHabashy, Mohamed A Naser, Renjie He, Abdallah S R Mohamed, Ariana J Sahli, Katherine A Hutcheson, Gary Brandon Gunn, David I Rosenthal, Clifton D Fuller, Amy C Moreno
{"title":"机器学习预测放射治疗口咽癌患者急性疼痛和阿片类药物剂量。","authors":"Vivian Salama, Laia Humbert-Vidan, Brandon Godinich, Kareem A Wahid, Dina M ElHabashy, Mohamed A Naser, Renjie He, Abdallah S R Mohamed, Ariana J Sahli, Katherine A Hutcheson, Gary Brandon Gunn, David I Rosenthal, Clifton D Fuller, Amy C Moreno","doi":"10.3389/fpain.2025.1567632","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Acute pain is common among oral cavity/oropharyngeal cancer (OCC/OPC) patients undergoing radiation therapy (RT). This study aimed to predict acute pain severity and opioid doses during RT using machine learning (ML), facilitating risk-stratification models for clinical trials.</p><p><strong>Methods: </strong>A retrospective study examined 900 OCC/OPC patients treated with RT during 2017-2023. Pain intensity was assessed using NRS (0-none, 10-worst) and total opioid doses were calculated using morphine equivalent daily dose (MEDD) conversion factors. Analgesics efficacy was assessed using combined pain intensity and total MEDD. ML predictive models were developed and validated, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM). Model performance was evaluated using discrimination and calibration metrics, while feature importance was investigated using bootstrapping.</p><p><strong>Results: </strong>For predicting pain intensity, the GBM demonstrated superior discrimination performance (AUROC 0.71, recall 0.39, and <i>F</i>1 score 0.48). For predicting the total MEDD, LR model outperformed other models (AUROC 0.67). For predicting analgesics efficacy, the SVM achieved the highest specificity (0.97), while the RF and GBM models achieved the highest AUROC (0.68). RF model emerged as the best calibrated model with an ECE of 0.02 and 0.05 for pain intensity and MEDD prediction, respectively. Baseline pain scores and vital signs demonstrated the most contributing features.</p><p><strong>Conclusion: </strong>ML models showed promise in predicting end-of-treatment pain intensity, opioid requirements and analgesics efficacy in OCC/OPC patients. Baseline pain score and vital signs are crucial predictors. Their implementation in clinical practice could facilitate early risk stratification and personalized pain management.</p>","PeriodicalId":73097,"journal":{"name":"Frontiers in pain research (Lausanne, Switzerland)","volume":"6 ","pages":"1567632"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning predicting acute pain and opioid dose in radiation treated oropharyngeal cancer patients.\",\"authors\":\"Vivian Salama, Laia Humbert-Vidan, Brandon Godinich, Kareem A Wahid, Dina M ElHabashy, Mohamed A Naser, Renjie He, Abdallah S R Mohamed, Ariana J Sahli, Katherine A Hutcheson, Gary Brandon Gunn, David I Rosenthal, Clifton D Fuller, Amy C Moreno\",\"doi\":\"10.3389/fpain.2025.1567632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Acute pain is common among oral cavity/oropharyngeal cancer (OCC/OPC) patients undergoing radiation therapy (RT). This study aimed to predict acute pain severity and opioid doses during RT using machine learning (ML), facilitating risk-stratification models for clinical trials.</p><p><strong>Methods: </strong>A retrospective study examined 900 OCC/OPC patients treated with RT during 2017-2023. Pain intensity was assessed using NRS (0-none, 10-worst) and total opioid doses were calculated using morphine equivalent daily dose (MEDD) conversion factors. Analgesics efficacy was assessed using combined pain intensity and total MEDD. ML predictive models were developed and validated, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM). Model performance was evaluated using discrimination and calibration metrics, while feature importance was investigated using bootstrapping.</p><p><strong>Results: </strong>For predicting pain intensity, the GBM demonstrated superior discrimination performance (AUROC 0.71, recall 0.39, and <i>F</i>1 score 0.48). For predicting the total MEDD, LR model outperformed other models (AUROC 0.67). For predicting analgesics efficacy, the SVM achieved the highest specificity (0.97), while the RF and GBM models achieved the highest AUROC (0.68). RF model emerged as the best calibrated model with an ECE of 0.02 and 0.05 for pain intensity and MEDD prediction, respectively. Baseline pain scores and vital signs demonstrated the most contributing features.</p><p><strong>Conclusion: </strong>ML models showed promise in predicting end-of-treatment pain intensity, opioid requirements and analgesics efficacy in OCC/OPC patients. Baseline pain score and vital signs are crucial predictors. Their implementation in clinical practice could facilitate early risk stratification and personalized pain management.</p>\",\"PeriodicalId\":73097,\"journal\":{\"name\":\"Frontiers in pain research (Lausanne, Switzerland)\",\"volume\":\"6 \",\"pages\":\"1567632\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in pain research (Lausanne, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fpain.2025.1567632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in pain research (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fpain.2025.1567632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性疼痛在接受放射治疗(RT)的口腔/口咽癌(OCC/OPC)患者中很常见。本研究旨在利用机器学习(ML)预测RT期间的急性疼痛严重程度和阿片类药物剂量,为临床试验提供风险分层模型。方法:对2017-2023年间900例接受RT治疗的OCC/OPC患者进行回顾性研究。采用NRS(0-无,10-最差)评估疼痛强度,采用吗啡当量日剂量(MEDD)换算因子计算阿片类药物总剂量。采用疼痛强度和总MEDD综合评价镇痛效果。开发并验证了机器学习预测模型,包括逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)和梯度增强机(GBM)。使用判别和校准指标评估模型性能,而使用自举方法研究特征重要性。结果:在预测疼痛强度方面,GBM表现出较好的鉴别性能(AUROC为0.71,召回率为0.39,F1评分为0.48)。对于总MEDD的预测,LR模型优于其他模型(AUROC为0.67)。在预测镇痛药疗效方面,SVM的特异性最高(0.97),而RF和GBM模型的AUROC最高(0.68)。RF模型是预测疼痛强度和MEDD的最佳校准模型,ECE分别为0.02和0.05。基线疼痛评分和生命体征显示了最重要的特征。结论:ML模型在预测OCC/OPC患者治疗结束时疼痛强度、阿片类药物需求和镇痛药物疗效方面具有良好的前景。基线疼痛评分和生命体征是重要的预测指标。它们在临床实践中的实施可以促进早期风险分层和个性化疼痛管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning predicting acute pain and opioid dose in radiation treated oropharyngeal cancer patients.

Introduction: Acute pain is common among oral cavity/oropharyngeal cancer (OCC/OPC) patients undergoing radiation therapy (RT). This study aimed to predict acute pain severity and opioid doses during RT using machine learning (ML), facilitating risk-stratification models for clinical trials.

Methods: A retrospective study examined 900 OCC/OPC patients treated with RT during 2017-2023. Pain intensity was assessed using NRS (0-none, 10-worst) and total opioid doses were calculated using morphine equivalent daily dose (MEDD) conversion factors. Analgesics efficacy was assessed using combined pain intensity and total MEDD. ML predictive models were developed and validated, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Gradient Boosting Machine (GBM). Model performance was evaluated using discrimination and calibration metrics, while feature importance was investigated using bootstrapping.

Results: For predicting pain intensity, the GBM demonstrated superior discrimination performance (AUROC 0.71, recall 0.39, and F1 score 0.48). For predicting the total MEDD, LR model outperformed other models (AUROC 0.67). For predicting analgesics efficacy, the SVM achieved the highest specificity (0.97), while the RF and GBM models achieved the highest AUROC (0.68). RF model emerged as the best calibrated model with an ECE of 0.02 and 0.05 for pain intensity and MEDD prediction, respectively. Baseline pain scores and vital signs demonstrated the most contributing features.

Conclusion: ML models showed promise in predicting end-of-treatment pain intensity, opioid requirements and analgesics efficacy in OCC/OPC patients. Baseline pain score and vital signs are crucial predictors. Their implementation in clinical practice could facilitate early risk stratification and personalized pain management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信