{"title":"Cy5软机器人:胃病变术中导航的“入口与工作”成像技术。","authors":"Lifeng He, Yu Pan, Wei Jin, Rong Tan, Yanan Xue, Danying Sun, Jingyu Zhang, Pingyu Xiang, Qin Fang, Yue Wang, Rong Xiong, Haojian Lu, Songmei Lou","doi":"10.34133/cbsystems.0212","DOIUrl":null,"url":null,"abstract":"<p><p>Locating tumors during laparoscopic surgery for early gastric cancers poses an important challenge because they lack involvement with the serosal layer and remain invisible within the peritoneal cavity. To address this issue, various techniques such as preoperative dye injection and magnetic clip detection systems have been introduced to aid in intraoperative tumor localization. However, these existing techniques are often intricate and lack intuition and endurance. In this study, we propose a novel approach utilizing fluorescent soft robots to accurately locate tumors within the stomach. The methodology involved placing a metal clip at the tumor site, followed by administering several soft robots labeled with Cy5. These soft robots were designed to autonomously converge around the metal clip. To validate their efficacy, we conducted animal experiments by implanting clips into the stomachs of rats and subsequently administering capsules containing the soft robots. By detecting the resulting fluorescence, we successfully identified the location of the clips within the stomach. Our findings indicate that these soft robots hold great promise as a viable alternative for localizing gastric lesions during laparoscopic surgery, which has better persistence and intuitiveness than other markup methods. Their implementation could significantly enhance the accuracy and efficiency of tumor identification in a technologically advanced and clinically accessible manner.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"6 ","pages":"0212"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986207/pdf/","citationCount":"0","resultStr":"{\"title\":\"Soft Robots with Cy5: An \\\"Intake and Work\\\" Imaging Technique for Intraoperative Navigation of Gastric Lesion.\",\"authors\":\"Lifeng He, Yu Pan, Wei Jin, Rong Tan, Yanan Xue, Danying Sun, Jingyu Zhang, Pingyu Xiang, Qin Fang, Yue Wang, Rong Xiong, Haojian Lu, Songmei Lou\",\"doi\":\"10.34133/cbsystems.0212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Locating tumors during laparoscopic surgery for early gastric cancers poses an important challenge because they lack involvement with the serosal layer and remain invisible within the peritoneal cavity. To address this issue, various techniques such as preoperative dye injection and magnetic clip detection systems have been introduced to aid in intraoperative tumor localization. However, these existing techniques are often intricate and lack intuition and endurance. In this study, we propose a novel approach utilizing fluorescent soft robots to accurately locate tumors within the stomach. The methodology involved placing a metal clip at the tumor site, followed by administering several soft robots labeled with Cy5. These soft robots were designed to autonomously converge around the metal clip. To validate their efficacy, we conducted animal experiments by implanting clips into the stomachs of rats and subsequently administering capsules containing the soft robots. By detecting the resulting fluorescence, we successfully identified the location of the clips within the stomach. Our findings indicate that these soft robots hold great promise as a viable alternative for localizing gastric lesions during laparoscopic surgery, which has better persistence and intuitiveness than other markup methods. Their implementation could significantly enhance the accuracy and efficiency of tumor identification in a technologically advanced and clinically accessible manner.</p>\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\"6 \",\"pages\":\"0212\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11986207/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/cbsystems.0212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/cbsystems.0212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Soft Robots with Cy5: An "Intake and Work" Imaging Technique for Intraoperative Navigation of Gastric Lesion.
Locating tumors during laparoscopic surgery for early gastric cancers poses an important challenge because they lack involvement with the serosal layer and remain invisible within the peritoneal cavity. To address this issue, various techniques such as preoperative dye injection and magnetic clip detection systems have been introduced to aid in intraoperative tumor localization. However, these existing techniques are often intricate and lack intuition and endurance. In this study, we propose a novel approach utilizing fluorescent soft robots to accurately locate tumors within the stomach. The methodology involved placing a metal clip at the tumor site, followed by administering several soft robots labeled with Cy5. These soft robots were designed to autonomously converge around the metal clip. To validate their efficacy, we conducted animal experiments by implanting clips into the stomachs of rats and subsequently administering capsules containing the soft robots. By detecting the resulting fluorescence, we successfully identified the location of the clips within the stomach. Our findings indicate that these soft robots hold great promise as a viable alternative for localizing gastric lesions during laparoscopic surgery, which has better persistence and intuitiveness than other markup methods. Their implementation could significantly enhance the accuracy and efficiency of tumor identification in a technologically advanced and clinically accessible manner.