将PICO原理整合到生成式人工智能提示工程中,增强医学图书馆员的信息检索能力。

IF 2.9 4区 医学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Kyle Robinson, Karen Bontekoe, Joanne Muellenbach
{"title":"将PICO原理整合到生成式人工智能提示工程中,增强医学图书馆员的信息检索能力。","authors":"Kyle Robinson, Karen Bontekoe, Joanne Muellenbach","doi":"10.5195/jmla.2025.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Prompt engineering, an emergent discipline at the intersection of Generative Artificial Intelligence (GAI), library science, and user experience design, presents an opportunity to enhance the quality and precision of information retrieval. An innovative approach applies the widely understood PICO framework, traditionally used in evidence-based medicine, to the art of prompt engineering. This approach is illustrated using the \"Task, Context, Example, Persona, Format, Tone\" (TCEPFT) prompt framework as an example. TCEPFT lends itself to a systematic methodology by incorporating elements of task specificity, contextual relevance, pertinent examples, personalization, formatting, and tonal appropriateness in a prompt design tailored to the desired outcome. Frameworks like TCEPFT offer substantial opportunities for librarians and information professionals to streamline prompt engineering and refine iterative processes. This practice can help information professionals produce consistent and high-quality outputs. Library professionals must embrace a renewed curiosity and develop expertise in prompt engineering to stay ahead in the digital information landscape and maintain their position at the forefront of the sector.</p>","PeriodicalId":47690,"journal":{"name":"Journal of the Medical Library Association","volume":"113 2","pages":"184-188"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating PICO principles into generative artificial intelligence prompt engineering to enhance information retrieval for medical librarians.\",\"authors\":\"Kyle Robinson, Karen Bontekoe, Joanne Muellenbach\",\"doi\":\"10.5195/jmla.2025.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prompt engineering, an emergent discipline at the intersection of Generative Artificial Intelligence (GAI), library science, and user experience design, presents an opportunity to enhance the quality and precision of information retrieval. An innovative approach applies the widely understood PICO framework, traditionally used in evidence-based medicine, to the art of prompt engineering. This approach is illustrated using the \\\"Task, Context, Example, Persona, Format, Tone\\\" (TCEPFT) prompt framework as an example. TCEPFT lends itself to a systematic methodology by incorporating elements of task specificity, contextual relevance, pertinent examples, personalization, formatting, and tonal appropriateness in a prompt design tailored to the desired outcome. Frameworks like TCEPFT offer substantial opportunities for librarians and information professionals to streamline prompt engineering and refine iterative processes. This practice can help information professionals produce consistent and high-quality outputs. Library professionals must embrace a renewed curiosity and develop expertise in prompt engineering to stay ahead in the digital information landscape and maintain their position at the forefront of the sector.</p>\",\"PeriodicalId\":47690,\"journal\":{\"name\":\"Journal of the Medical Library Association\",\"volume\":\"113 2\",\"pages\":\"184-188\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Medical Library Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.5195/jmla.2025.2022\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Medical Library Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.5195/jmla.2025.2022","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

提示工程是生成人工智能(GAI)、图书馆学和用户体验设计交叉的新兴学科,为提高信息检索的质量和精度提供了机会。一种创新的方法将广泛理解的PICO框架(传统上用于循证医学)应用于提示工程的艺术。此方法使用“任务、上下文、示例、角色、格式、语气”(TCEPFT)提示框架作为示例进行说明。TCEPFT通过将任务特异性、上下文相关性、相关示例、个性化、格式和音调适当性等元素结合在一个针对预期结果量身定制的提示设计中,使其成为一种系统的方法。像TCEPFT这样的框架为图书馆员和信息专业人员提供了大量的机会来简化快速工程和改进迭代过程。这种做法可以帮助信息专业人员产生一致的高质量输出。图书馆专业人员必须抱着新的好奇心,在快速工程方面发展专业知识,以保持在数字信息领域的领先地位,并保持在该领域的前沿地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating PICO principles into generative artificial intelligence prompt engineering to enhance information retrieval for medical librarians.

Prompt engineering, an emergent discipline at the intersection of Generative Artificial Intelligence (GAI), library science, and user experience design, presents an opportunity to enhance the quality and precision of information retrieval. An innovative approach applies the widely understood PICO framework, traditionally used in evidence-based medicine, to the art of prompt engineering. This approach is illustrated using the "Task, Context, Example, Persona, Format, Tone" (TCEPFT) prompt framework as an example. TCEPFT lends itself to a systematic methodology by incorporating elements of task specificity, contextual relevance, pertinent examples, personalization, formatting, and tonal appropriateness in a prompt design tailored to the desired outcome. Frameworks like TCEPFT offer substantial opportunities for librarians and information professionals to streamline prompt engineering and refine iterative processes. This practice can help information professionals produce consistent and high-quality outputs. Library professionals must embrace a renewed curiosity and develop expertise in prompt engineering to stay ahead in the digital information landscape and maintain their position at the forefront of the sector.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Medical Library Association
Journal of the Medical Library Association INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
4.10
自引率
10.00%
发文量
39
审稿时长
26 weeks
期刊介绍: The Journal of the Medical Library Association (JMLA) is an international, peer-reviewed journal published quarterly that aims to advance the practice and research knowledgebase of health sciences librarianship. The most current impact factor for the JMLA (from the 2007 edition of Journal Citation Reports) is 1.392.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信