Yuchen Hu, Junchao Zhou, Yuhang Gao, Ying Fan, Ban Chen, Jiangtao Su, Hong Li
{"title":"多功能纳米复合水凝胶:促进糖尿病伤口愈合的有效途径。","authors":"Yuchen Hu, Junchao Zhou, Yuhang Gao, Ying Fan, Ban Chen, Jiangtao Su, Hong Li","doi":"10.1088/1748-605X/add06f","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes, a metabolic disease that is becoming increasingly severe globally, presents a significant challenge in the medical field. Diabetic wounds are characterized by their chronicity, difficulty healing, and complex microenvironment that harbors multiple adverse factors, including elevated hyperglycemia, persistent inflammation, susceptibility to infections, and oxidative stress, all of which contribute to the impaired healing process. Nanocomposite hydrogels, as materials with unique physicochemical properties and biocompatibility, have gained growing attention in recent years for their potential applications in diabetic wound healing. These hydrogels provide a moist healing environment for wounds and regulate cellular behavior and signaling pathways, promoting wound repair and healing. By introducing specific functional groups and nanoparticles, nanocomposite hydrogels can respond to pathological features of wounds, enabling adaptive drug release. Owing to their diverse bioactive functions, nanocomposite hydrogels are powerful tools for the treatment of diabetic wounds. Thus, this article provides an overview of recent progress in the use of nanocomposite hydrogels for diabetic wound healing.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional nanocomposite hydrogels: an effective approach to promote diabetic wound healing.\",\"authors\":\"Yuchen Hu, Junchao Zhou, Yuhang Gao, Ying Fan, Ban Chen, Jiangtao Su, Hong Li\",\"doi\":\"10.1088/1748-605X/add06f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes, a metabolic disease that is becoming increasingly severe globally, presents a significant challenge in the medical field. Diabetic wounds are characterized by their chronicity, difficulty healing, and complex microenvironment that harbors multiple adverse factors, including elevated hyperglycemia, persistent inflammation, susceptibility to infections, and oxidative stress, all of which contribute to the impaired healing process. Nanocomposite hydrogels, as materials with unique physicochemical properties and biocompatibility, have gained growing attention in recent years for their potential applications in diabetic wound healing. These hydrogels provide a moist healing environment for wounds and regulate cellular behavior and signaling pathways, promoting wound repair and healing. By introducing specific functional groups and nanoparticles, nanocomposite hydrogels can respond to pathological features of wounds, enabling adaptive drug release. Owing to their diverse bioactive functions, nanocomposite hydrogels are powerful tools for the treatment of diabetic wounds. Thus, this article provides an overview of recent progress in the use of nanocomposite hydrogels for diabetic wound healing.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\"20 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/add06f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/add06f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multifunctional nanocomposite hydrogels: an effective approach to promote diabetic wound healing.
Diabetes, a metabolic disease that is becoming increasingly severe globally, presents a significant challenge in the medical field. Diabetic wounds are characterized by their chronicity, difficulty healing, and complex microenvironment that harbors multiple adverse factors, including elevated hyperglycemia, persistent inflammation, susceptibility to infections, and oxidative stress, all of which contribute to the impaired healing process. Nanocomposite hydrogels, as materials with unique physicochemical properties and biocompatibility, have gained growing attention in recent years for their potential applications in diabetic wound healing. These hydrogels provide a moist healing environment for wounds and regulate cellular behavior and signaling pathways, promoting wound repair and healing. By introducing specific functional groups and nanoparticles, nanocomposite hydrogels can respond to pathological features of wounds, enabling adaptive drug release. Owing to their diverse bioactive functions, nanocomposite hydrogels are powerful tools for the treatment of diabetic wounds. Thus, this article provides an overview of recent progress in the use of nanocomposite hydrogels for diabetic wound healing.