Marian M Strazzeri, Jeffrey R Harring, Nan Bernstein Ratner
{"title":"计数反应数据的多相结构潜曲线模型:英语形态学习得的再分析。","authors":"Marian M Strazzeri, Jeffrey R Harring, Nan Bernstein Ratner","doi":"10.1017/psy.2025.8","DOIUrl":null,"url":null,"abstract":"<p><p>Structured latent curve models (SLCMs) for continuous repeated measures data have been the subject of considerable recent research activity. In this article, we develop a first-order SLCM for repeated measures count data where the underlying change process is theorized to develop in distinct phases. Parameters of the multiphase or piecewise growth model, including changepoints, are allowed to vary across individuals. Exposure is allowed to vary across both individuals and time. We demonstrate our modeling approach on empirical expressive language data (grammatical morpheme counts) drawn from multiple distinct corpora available in the Child Language Data Exchange System (CHILDES), where the acquisition of grammatical morphology is understood to occur in distinct phases in typically developing children. A multiphase SLCM is fit to summarize individuals' data as well as the average developmental pattern. Change in time-varying dispersion (unexplained variability in morpheme counts) over the course of early childhood is modeled concurrently to provide additional insights into acquisition. Unique characteristics of count data create modeling, identification, estimation, and diagnostic challenges that are exacerbated by incorporating growth models with nonlinear random effects. These are discussed at length. We provide annotated software code for each of models used in the empirical example.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-40"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiphase Structured Latent Curve Models for Count Response Data: A Re-Analysis of the Acquisition of Morphology in English.\",\"authors\":\"Marian M Strazzeri, Jeffrey R Harring, Nan Bernstein Ratner\",\"doi\":\"10.1017/psy.2025.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structured latent curve models (SLCMs) for continuous repeated measures data have been the subject of considerable recent research activity. In this article, we develop a first-order SLCM for repeated measures count data where the underlying change process is theorized to develop in distinct phases. Parameters of the multiphase or piecewise growth model, including changepoints, are allowed to vary across individuals. Exposure is allowed to vary across both individuals and time. We demonstrate our modeling approach on empirical expressive language data (grammatical morpheme counts) drawn from multiple distinct corpora available in the Child Language Data Exchange System (CHILDES), where the acquisition of grammatical morphology is understood to occur in distinct phases in typically developing children. A multiphase SLCM is fit to summarize individuals' data as well as the average developmental pattern. Change in time-varying dispersion (unexplained variability in morpheme counts) over the course of early childhood is modeled concurrently to provide additional insights into acquisition. Unique characteristics of count data create modeling, identification, estimation, and diagnostic challenges that are exacerbated by incorporating growth models with nonlinear random effects. These are discussed at length. We provide annotated software code for each of models used in the empirical example.</p>\",\"PeriodicalId\":54534,\"journal\":{\"name\":\"Psychometrika\",\"volume\":\" \",\"pages\":\"1-40\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychometrika\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1017/psy.2025.8\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.8","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Multiphase Structured Latent Curve Models for Count Response Data: A Re-Analysis of the Acquisition of Morphology in English.
Structured latent curve models (SLCMs) for continuous repeated measures data have been the subject of considerable recent research activity. In this article, we develop a first-order SLCM for repeated measures count data where the underlying change process is theorized to develop in distinct phases. Parameters of the multiphase or piecewise growth model, including changepoints, are allowed to vary across individuals. Exposure is allowed to vary across both individuals and time. We demonstrate our modeling approach on empirical expressive language data (grammatical morpheme counts) drawn from multiple distinct corpora available in the Child Language Data Exchange System (CHILDES), where the acquisition of grammatical morphology is understood to occur in distinct phases in typically developing children. A multiphase SLCM is fit to summarize individuals' data as well as the average developmental pattern. Change in time-varying dispersion (unexplained variability in morpheme counts) over the course of early childhood is modeled concurrently to provide additional insights into acquisition. Unique characteristics of count data create modeling, identification, estimation, and diagnostic challenges that are exacerbated by incorporating growth models with nonlinear random effects. These are discussed at length. We provide annotated software code for each of models used in the empirical example.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.