Hammad War, Sumit Sharma, Sanchit Dhankhar, Samrat Chauhan, Supriya Khanra
{"title":"超越表面:植入式药物输送系统在现代医学中的作用。","authors":"Hammad War, Sumit Sharma, Sanchit Dhankhar, Samrat Chauhan, Supriya Khanra","doi":"10.2174/0126673878369501250404184028","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced drug delivery methods have emerged mainly because of the limitations of traditional drug delivery systems like oral and intravenous routes, along with fluctuating concentrations of drugs that have compromised therapeutic outcomes. An implantable drug delivery system (IDDS) presents an attractive alternative: long-term, continuous drug release improves therapeutic efficacy while minimizing toxicity and side effects. IDDS, first presented in the 1930s as subcutaneous hormone pellets, have gained much attention recently in drug delivery due to their controlled release of drugs in a localized and sustained manner. In systemic treatments, drugs administered through IDDS evade first-pass metabolism and enzymatic degradation within the gastrointestinal tract, therefore enhancing drug bioavailability. The most suitable properties of IDDS are its application with drugs that have poor stability or solubility in oral formulations. Even though implantation is invasive, the benefits of infrequent administration, higher patient compliance, and being able to discontinue therapy when side effects are present far outweigh the disadvantages. Today, IDDSs are used in a myriad of therapeutic areas: contraception, chemotherapy, and pain management, to name a few. Future developments in such technologies, fine-tuning these systems further, will revolutionize drug therapy by bringing even better and more patient-friendly drugs with both better efficacy and sustained periods of effects.</p>","PeriodicalId":94352,"journal":{"name":"Recent advances in drug delivery and formulation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond the Surface: The Role of Implantable Drug Delivery Systems in Modern Medicine.\",\"authors\":\"Hammad War, Sumit Sharma, Sanchit Dhankhar, Samrat Chauhan, Supriya Khanra\",\"doi\":\"10.2174/0126673878369501250404184028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced drug delivery methods have emerged mainly because of the limitations of traditional drug delivery systems like oral and intravenous routes, along with fluctuating concentrations of drugs that have compromised therapeutic outcomes. An implantable drug delivery system (IDDS) presents an attractive alternative: long-term, continuous drug release improves therapeutic efficacy while minimizing toxicity and side effects. IDDS, first presented in the 1930s as subcutaneous hormone pellets, have gained much attention recently in drug delivery due to their controlled release of drugs in a localized and sustained manner. In systemic treatments, drugs administered through IDDS evade first-pass metabolism and enzymatic degradation within the gastrointestinal tract, therefore enhancing drug bioavailability. The most suitable properties of IDDS are its application with drugs that have poor stability or solubility in oral formulations. Even though implantation is invasive, the benefits of infrequent administration, higher patient compliance, and being able to discontinue therapy when side effects are present far outweigh the disadvantages. Today, IDDSs are used in a myriad of therapeutic areas: contraception, chemotherapy, and pain management, to name a few. Future developments in such technologies, fine-tuning these systems further, will revolutionize drug therapy by bringing even better and more patient-friendly drugs with both better efficacy and sustained periods of effects.</p>\",\"PeriodicalId\":94352,\"journal\":{\"name\":\"Recent advances in drug delivery and formulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent advances in drug delivery and formulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0126673878369501250404184028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0126673878369501250404184028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Beyond the Surface: The Role of Implantable Drug Delivery Systems in Modern Medicine.
Advanced drug delivery methods have emerged mainly because of the limitations of traditional drug delivery systems like oral and intravenous routes, along with fluctuating concentrations of drugs that have compromised therapeutic outcomes. An implantable drug delivery system (IDDS) presents an attractive alternative: long-term, continuous drug release improves therapeutic efficacy while minimizing toxicity and side effects. IDDS, first presented in the 1930s as subcutaneous hormone pellets, have gained much attention recently in drug delivery due to their controlled release of drugs in a localized and sustained manner. In systemic treatments, drugs administered through IDDS evade first-pass metabolism and enzymatic degradation within the gastrointestinal tract, therefore enhancing drug bioavailability. The most suitable properties of IDDS are its application with drugs that have poor stability or solubility in oral formulations. Even though implantation is invasive, the benefits of infrequent administration, higher patient compliance, and being able to discontinue therapy when side effects are present far outweigh the disadvantages. Today, IDDSs are used in a myriad of therapeutic areas: contraception, chemotherapy, and pain management, to name a few. Future developments in such technologies, fine-tuning these systems further, will revolutionize drug therapy by bringing even better and more patient-friendly drugs with both better efficacy and sustained periods of effects.