用于骨组织工程应用的模块化、血管化的肥大软骨结构。

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING
Nicholas G Schott, Gurcharan Kaur, Rhima M Coleman, Jan P Stegemann
{"title":"用于骨组织工程应用的模块化、血管化的肥大软骨结构。","authors":"Nicholas G Schott, Gurcharan Kaur, Rhima M Coleman, Jan P Stegemann","doi":"10.1089/ten.tea.2024.0367","DOIUrl":null,"url":null,"abstract":"<p><p>Insufficient vascularization is the main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization. This study harnessed the physiological process of endochondral ossification to create multiphase tissues that allowed concomitant mineralization and vessel formation. Mesenchymal stromal cells in pellet culture were differentiated toward a cartilage phenotype, followed by induction to chondrocyte hypertrophy. Hypertrophic pellets (HPs) exhibited increased alkaline phosphatase activity, calcium deposition, and osteogenic gene expression relative to chondrogenic pellets. In addition, HPs secreted and sequestered angiogenic factors, and supported new blood vessel formation by cocultured endothelial cells and undifferentiated stromal cells. Multiphase constructs created by combining HPs and vascularizing microtissues and maintained in an unsupplemented basal culture medium were shown to support robust vascularization and sustained tissue mineralization. These results demonstrate a promising <i>in vitro</i> strategy to produce multiphase-engineered constructs that concomitantly support the generation of mineralized and vascularized tissue in the absence of exogenous osteogenic or vasculogenic medium supplements.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular, Vascularized Hypertrophic Cartilage Constructs for Bone Tissue Engineering Applications.\",\"authors\":\"Nicholas G Schott, Gurcharan Kaur, Rhima M Coleman, Jan P Stegemann\",\"doi\":\"10.1089/ten.tea.2024.0367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Insufficient vascularization is the main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization. This study harnessed the physiological process of endochondral ossification to create multiphase tissues that allowed concomitant mineralization and vessel formation. Mesenchymal stromal cells in pellet culture were differentiated toward a cartilage phenotype, followed by induction to chondrocyte hypertrophy. Hypertrophic pellets (HPs) exhibited increased alkaline phosphatase activity, calcium deposition, and osteogenic gene expression relative to chondrogenic pellets. In addition, HPs secreted and sequestered angiogenic factors, and supported new blood vessel formation by cocultured endothelial cells and undifferentiated stromal cells. Multiphase constructs created by combining HPs and vascularizing microtissues and maintained in an unsupplemented basal culture medium were shown to support robust vascularization and sustained tissue mineralization. These results demonstrate a promising <i>in vitro</i> strategy to produce multiphase-engineered constructs that concomitantly support the generation of mineralized and vascularized tissue in the absence of exogenous osteogenic or vasculogenic medium supplements.</p>\",\"PeriodicalId\":56375,\"journal\":{\"name\":\"Tissue Engineering Part A\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Engineering Part A\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tea.2024.0367\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0367","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

血管化不足是制造工程骨移植物治疗大缺损和缺血性缺损的主要障碍。模块化组织工程方法在这一应用中具有前景,因为它能够组合组织类型和定位微环境线索,以驱动所需的细胞功能。在直接骨形成方法中,维持持续的成骨活性是具有挑战性的,因为血管生成线索可以抑制组织矿化。这项研究利用软骨内成骨的生理过程来创造多相组织,允许伴随矿化和血管形成。颗粒培养的间充质间质细胞向软骨表型分化,随后诱导软骨细胞肥大。与软骨颗粒相比,增生性颗粒表现出碱性磷酸酶活性、钙沉积和成骨基因表达的增加。此外,HPs分泌和隔离血管生成因子,并通过共培养内皮细胞和未分化的基质细胞支持新血管的形成。通过结合hp和血管化微组织并在无补充的基础培养基中维持形成的多相结构被证明支持强大的血管化和持续的组织矿化。这些结果表明,在没有外源性成骨或血管生成培养基补充的情况下,生产多相工程构建体同时支持矿化和血管化组织的产生是一种有希望的体外策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular, Vascularized Hypertrophic Cartilage Constructs for Bone Tissue Engineering Applications.

Insufficient vascularization is the main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization. This study harnessed the physiological process of endochondral ossification to create multiphase tissues that allowed concomitant mineralization and vessel formation. Mesenchymal stromal cells in pellet culture were differentiated toward a cartilage phenotype, followed by induction to chondrocyte hypertrophy. Hypertrophic pellets (HPs) exhibited increased alkaline phosphatase activity, calcium deposition, and osteogenic gene expression relative to chondrogenic pellets. In addition, HPs secreted and sequestered angiogenic factors, and supported new blood vessel formation by cocultured endothelial cells and undifferentiated stromal cells. Multiphase constructs created by combining HPs and vascularizing microtissues and maintained in an unsupplemented basal culture medium were shown to support robust vascularization and sustained tissue mineralization. These results demonstrate a promising in vitro strategy to produce multiphase-engineered constructs that concomitantly support the generation of mineralized and vascularized tissue in the absence of exogenous osteogenic or vasculogenic medium supplements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信