一般天才和数学专家解决数学问题的洞察力要素:PO电极的ERP振幅。

IF 2.6 3区 医学 Q2 BEHAVIORAL SCIENCES
Frontiers in Integrative Neuroscience Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI:10.3389/fnint.2025.1523334
Ilana Waisman, Roza Leikin, Mark Leikin
{"title":"一般天才和数学专家解决数学问题的洞察力要素:PO电极的ERP振幅。","authors":"Ilana Waisman, Roza Leikin, Mark Leikin","doi":"10.3389/fnint.2025.1523334","DOIUrl":null,"url":null,"abstract":"<p><p>School mathematics mainly embraces algorithmic problem solving, pays less attention to strategic reasoning, and rarely contains insightful problem solving. Based on our previous research, we hypothesize that success in solving insight problems correlates strongly with general giftedness, while mathematical expertise is essential for strategy-based problem solving. Furthermore, we employ a phenomenon of greater ERP amplitudes in PO4/8 electrodes associated with insightful problem solving. In this study, 114 high school students (aged 16-18) with varying degrees of general giftedness and mathematical expertise were asked to solve mathematical problem of three distinct type: (1) function problems, whose solutions are memory-based; (2) area problems that necessitate strategic thinking; and (3) insight problems, that necessitate insight for their resolution. The problem solving process was accompanied by ERP recording. We demonstrate that variations in accuracy of solutions and reaction time for correct responses between tasks are influenced by students' general giftedness and mathematical expertise. Our ERP analyses partly supported our hypotheses regarding the relationship between PO electrode activation, insight-based problem solving processes, and participants' levels of giftedness and mathematical expertise.</p>","PeriodicalId":56016,"journal":{"name":"Frontiers in Integrative Neuroscience","volume":"19 ","pages":"1523334"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006039/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insight elements of mathematical problem solving in generally gifted and mathematical experts: ERP amplitudes in PO electrodes.\",\"authors\":\"Ilana Waisman, Roza Leikin, Mark Leikin\",\"doi\":\"10.3389/fnint.2025.1523334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>School mathematics mainly embraces algorithmic problem solving, pays less attention to strategic reasoning, and rarely contains insightful problem solving. Based on our previous research, we hypothesize that success in solving insight problems correlates strongly with general giftedness, while mathematical expertise is essential for strategy-based problem solving. Furthermore, we employ a phenomenon of greater ERP amplitudes in PO4/8 electrodes associated with insightful problem solving. In this study, 114 high school students (aged 16-18) with varying degrees of general giftedness and mathematical expertise were asked to solve mathematical problem of three distinct type: (1) function problems, whose solutions are memory-based; (2) area problems that necessitate strategic thinking; and (3) insight problems, that necessitate insight for their resolution. The problem solving process was accompanied by ERP recording. We demonstrate that variations in accuracy of solutions and reaction time for correct responses between tasks are influenced by students' general giftedness and mathematical expertise. Our ERP analyses partly supported our hypotheses regarding the relationship between PO electrode activation, insight-based problem solving processes, and participants' levels of giftedness and mathematical expertise.</p>\",\"PeriodicalId\":56016,\"journal\":{\"name\":\"Frontiers in Integrative Neuroscience\",\"volume\":\"19 \",\"pages\":\"1523334\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006039/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Integrative Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnint.2025.1523334\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Integrative Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnint.2025.1523334","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

学校数学主要包含算法问题解决,较少关注策略推理,很少包含有洞察力的问题解决。根据我们之前的研究,我们假设解决洞察力问题的成功与一般天赋密切相关,而数学专业知识对于解决基于策略的问题至关重要。此外,我们在PO4/8电极中采用了与洞察力问题解决相关的更大ERP振幅的现象。在本研究中,114名具有不同程度一般天赋和数学专长的高中生(16-18岁)被要求解决三种不同类型的数学问题:(1)函数问题,其解基于记忆;(2)需要进行战略思考的领域问题;(3)洞察力问题,需要洞察力来解决。解决问题的过程伴随着ERP记录。我们证明,解决方案的准确性和正确的反应时间之间的任务之间的变化是由学生的一般天赋和数学专业知识的影响。我们的ERP分析部分支持了我们关于PO电极激活、基于洞察力的问题解决过程和参与者的天赋水平和数学专业知识之间关系的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insight elements of mathematical problem solving in generally gifted and mathematical experts: ERP amplitudes in PO electrodes.

School mathematics mainly embraces algorithmic problem solving, pays less attention to strategic reasoning, and rarely contains insightful problem solving. Based on our previous research, we hypothesize that success in solving insight problems correlates strongly with general giftedness, while mathematical expertise is essential for strategy-based problem solving. Furthermore, we employ a phenomenon of greater ERP amplitudes in PO4/8 electrodes associated with insightful problem solving. In this study, 114 high school students (aged 16-18) with varying degrees of general giftedness and mathematical expertise were asked to solve mathematical problem of three distinct type: (1) function problems, whose solutions are memory-based; (2) area problems that necessitate strategic thinking; and (3) insight problems, that necessitate insight for their resolution. The problem solving process was accompanied by ERP recording. We demonstrate that variations in accuracy of solutions and reaction time for correct responses between tasks are influenced by students' general giftedness and mathematical expertise. Our ERP analyses partly supported our hypotheses regarding the relationship between PO electrode activation, insight-based problem solving processes, and participants' levels of giftedness and mathematical expertise.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Integrative Neuroscience
Frontiers in Integrative Neuroscience Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.60
自引率
2.90%
发文量
148
审稿时长
14 weeks
期刊介绍: Frontiers in Integrative Neuroscience publishes rigorously peer-reviewed research that synthesizes multiple facets of brain structure and function, to better understand how multiple diverse functions are integrated to produce complex behaviors. Led by an outstanding Editorial Board of international experts, this multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Our goal is to publish research related to furthering the understanding of the integrative mechanisms underlying brain functioning across one or more interacting levels of neural organization. In most real life experiences, sensory inputs from several modalities converge and interact in a manner that influences perception and actions generating purposeful and social behaviors. The journal is therefore focused on the primary questions of how multiple sensory, cognitive and emotional processes merge to produce coordinated complex behavior. It is questions such as this that cannot be answered at a single level – an ion channel, a neuron or a synapse – that we wish to focus on. In Frontiers in Integrative Neuroscience we welcome in vitro or in vivo investigations across the molecular, cellular, and systems and behavioral level. Research in any species and at any stage of development and aging that are focused at understanding integration mechanisms underlying emergent properties of the brain and behavior are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信