硒驱动的活性氧活化和铁(II)再生用于增强纳米催化抗菌治疗。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Chenyao Wu, Yanling You, Dehong Yu, Ya-Xuan Zhu, Han Lin, Jianlin Shi
{"title":"硒驱动的活性氧活化和铁(II)再生用于增强纳米催化抗菌治疗。","authors":"Chenyao Wu, Yanling You, Dehong Yu, Ya-Xuan Zhu, Han Lin, Jianlin Shi","doi":"10.1002/adhm.202501021","DOIUrl":null,"url":null,"abstract":"<p><p>Fenton-based nanocatalytic therapy has attracted widespread attention for its high efficiency and safety. Nevertheless, Fe<sup>2+</sup> regeneration, as the rate-limiting step of Fenton reaction, hinders the ROS-induced oxidative killing. Herein, a Fe<sup>2+</sup> auto-regeneration strategy is exemplified by 2D FeSe<sub>2</sub> nanosheets to break the rate limitation of Fenton reaction and subsequently enhances the antibacterial oxidative damage via dual ROS generation pathways. To be specific, the Se species accelerate the Fe<sup>3+</sup> reduction to maintain high ·OH productivity of Fe<sup>2+</sup>-mediated Fenton reaction, which is accompanied by the production of H<sub>2</sub>Se in the presence of H<sup>+</sup>. The H<sub>2</sub>Se further converts O<sub>2</sub> into O<sub>2</sub> <sup>·-</sup> and synergistically breaks the oxidative threshold of bacteria, leading to irreversible bacterial death with glutathione depletion, lipid peroxidation, and membrane destruction. In summary, the FeSe<sub>2</sub>-mediated Fe<sup>2+</sup> auto-regeneration and ROS self-production pathways largely elevate its oxidative killing capability, providing a potential ROS enhancement strategy for broad-spectrum nonantibiotic bacterial disinfection.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2501021"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenide-Driven Reactive Oxygen Species Activation and Fe(II) Regeneration for Enhanced Nanocatalytic Antibacterial Therapeutics.\",\"authors\":\"Chenyao Wu, Yanling You, Dehong Yu, Ya-Xuan Zhu, Han Lin, Jianlin Shi\",\"doi\":\"10.1002/adhm.202501021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fenton-based nanocatalytic therapy has attracted widespread attention for its high efficiency and safety. Nevertheless, Fe<sup>2+</sup> regeneration, as the rate-limiting step of Fenton reaction, hinders the ROS-induced oxidative killing. Herein, a Fe<sup>2+</sup> auto-regeneration strategy is exemplified by 2D FeSe<sub>2</sub> nanosheets to break the rate limitation of Fenton reaction and subsequently enhances the antibacterial oxidative damage via dual ROS generation pathways. To be specific, the Se species accelerate the Fe<sup>3+</sup> reduction to maintain high ·OH productivity of Fe<sup>2+</sup>-mediated Fenton reaction, which is accompanied by the production of H<sub>2</sub>Se in the presence of H<sup>+</sup>. The H<sub>2</sub>Se further converts O<sub>2</sub> into O<sub>2</sub> <sup>·-</sup> and synergistically breaks the oxidative threshold of bacteria, leading to irreversible bacterial death with glutathione depletion, lipid peroxidation, and membrane destruction. In summary, the FeSe<sub>2</sub>-mediated Fe<sup>2+</sup> auto-regeneration and ROS self-production pathways largely elevate its oxidative killing capability, providing a potential ROS enhancement strategy for broad-spectrum nonantibiotic bacterial disinfection.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2501021\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202501021\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202501021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

fenton基纳米催化治疗因其高效、安全等优点而受到广泛关注。然而,Fe2+再生作为Fenton反应的限速步骤,阻碍了ros诱导的氧化杀伤。本文以二维FeSe2纳米片为例,采用Fe2+自动再生策略,打破Fenton反应的速率限制,随后通过双ROS生成途径增强抗菌氧化损伤。具体来说,硒加速了Fe3+的还原,以保持Fe2+介导的Fenton反应的高·OH生产率,同时在H+存在的情况下产生H2Se。H2Se进一步将O2转化为O2·-,并协同打破细菌的氧化阈值,导致不可逆的细菌死亡,伴有谷胱甘肽耗竭、脂质过氧化和膜破坏。综上所述,fese2介导的Fe2+自动再生和ROS自我产生途径大大提高了其氧化杀伤能力,为广谱非抗生素细菌消毒提供了潜在的ROS增强策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selenide-Driven Reactive Oxygen Species Activation and Fe(II) Regeneration for Enhanced Nanocatalytic Antibacterial Therapeutics.

Fenton-based nanocatalytic therapy has attracted widespread attention for its high efficiency and safety. Nevertheless, Fe2+ regeneration, as the rate-limiting step of Fenton reaction, hinders the ROS-induced oxidative killing. Herein, a Fe2+ auto-regeneration strategy is exemplified by 2D FeSe2 nanosheets to break the rate limitation of Fenton reaction and subsequently enhances the antibacterial oxidative damage via dual ROS generation pathways. To be specific, the Se species accelerate the Fe3+ reduction to maintain high ·OH productivity of Fe2+-mediated Fenton reaction, which is accompanied by the production of H2Se in the presence of H+. The H2Se further converts O2 into O2 ·- and synergistically breaks the oxidative threshold of bacteria, leading to irreversible bacterial death with glutathione depletion, lipid peroxidation, and membrane destruction. In summary, the FeSe2-mediated Fe2+ auto-regeneration and ROS self-production pathways largely elevate its oxidative killing capability, providing a potential ROS enhancement strategy for broad-spectrum nonantibiotic bacterial disinfection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信