有序因子模型中参数不稳定性的基于分数的检验。

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Franz Classe, Rudolf Debelak, Christoph Kern
{"title":"有序因子模型中参数不稳定性的基于分数的检验。","authors":"Franz Classe, Rudolf Debelak, Christoph Kern","doi":"10.1111/bmsp.12392","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel approach for computing model scores for ordinal factor models, that is, graded response models (GRMs) fitted with a limited information (LI) estimator. The method makes it possible to compute score-based tests for parameter instability for ordinal factor models. This way, rapid execution of numerous parameter instability tests for multidimensional item response theory (MIRT) models is facilitated. We present a comparative analysis of the performance of the proposed score-based tests for ordinal factor models in comparison to tests for GRMs fitted with a full information (FI) estimator. The new method has a good Type I error rate, high power and is computationally faster than FI estimation. We further illustrate that the proposed method works well with complex models in real data applications. The method is implemented in the lavaan package in R.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Score-based tests for parameter instability in ordinal factor models.\",\"authors\":\"Franz Classe, Rudolf Debelak, Christoph Kern\",\"doi\":\"10.1111/bmsp.12392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a novel approach for computing model scores for ordinal factor models, that is, graded response models (GRMs) fitted with a limited information (LI) estimator. The method makes it possible to compute score-based tests for parameter instability for ordinal factor models. This way, rapid execution of numerous parameter instability tests for multidimensional item response theory (MIRT) models is facilitated. We present a comparative analysis of the performance of the proposed score-based tests for ordinal factor models in comparison to tests for GRMs fitted with a full information (FI) estimator. The new method has a good Type I error rate, high power and is computationally faster than FI estimation. We further illustrate that the proposed method works well with complex models in real data applications. The method is implemented in the lavaan package in R.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12392\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12392","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种计算有序因子模型分数的新方法,即用有限信息(LI)估计器拟合的分级响应模型(GRMs)。该方法使计算基于分数的参数不稳定性测试的顺序因素模型成为可能。通过这种方法,可以快速执行多维项目反应理论(MIRT)模型的众多参数不稳定性测试。我们提出了一个比较分析的性能提出的分数为基础的测试为有序因子模型,与测试的grm拟合与一个完整的信息(FI)估计。该方法具有较好的I型误差率、较高的功率和较FI估计计算速度快的特点。在实际数据应用中,我们进一步证明了该方法可以很好地处理复杂的模型。该方法在R中的lavaan包中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Score-based tests for parameter instability in ordinal factor models.

We present a novel approach for computing model scores for ordinal factor models, that is, graded response models (GRMs) fitted with a limited information (LI) estimator. The method makes it possible to compute score-based tests for parameter instability for ordinal factor models. This way, rapid execution of numerous parameter instability tests for multidimensional item response theory (MIRT) models is facilitated. We present a comparative analysis of the performance of the proposed score-based tests for ordinal factor models in comparison to tests for GRMs fitted with a full information (FI) estimator. The new method has a good Type I error rate, high power and is computationally faster than FI estimation. We further illustrate that the proposed method works well with complex models in real data applications. The method is implemented in the lavaan package in R.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信