{"title":"有序因子模型中参数不稳定性的基于分数的检验。","authors":"Franz Classe, Rudolf Debelak, Christoph Kern","doi":"10.1111/bmsp.12392","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel approach for computing model scores for ordinal factor models, that is, graded response models (GRMs) fitted with a limited information (LI) estimator. The method makes it possible to compute score-based tests for parameter instability for ordinal factor models. This way, rapid execution of numerous parameter instability tests for multidimensional item response theory (MIRT) models is facilitated. We present a comparative analysis of the performance of the proposed score-based tests for ordinal factor models in comparison to tests for GRMs fitted with a full information (FI) estimator. The new method has a good Type I error rate, high power and is computationally faster than FI estimation. We further illustrate that the proposed method works well with complex models in real data applications. The method is implemented in the lavaan package in R.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Score-based tests for parameter instability in ordinal factor models.\",\"authors\":\"Franz Classe, Rudolf Debelak, Christoph Kern\",\"doi\":\"10.1111/bmsp.12392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a novel approach for computing model scores for ordinal factor models, that is, graded response models (GRMs) fitted with a limited information (LI) estimator. The method makes it possible to compute score-based tests for parameter instability for ordinal factor models. This way, rapid execution of numerous parameter instability tests for multidimensional item response theory (MIRT) models is facilitated. We present a comparative analysis of the performance of the proposed score-based tests for ordinal factor models in comparison to tests for GRMs fitted with a full information (FI) estimator. The new method has a good Type I error rate, high power and is computationally faster than FI estimation. We further illustrate that the proposed method works well with complex models in real data applications. The method is implemented in the lavaan package in R.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12392\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12392","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Score-based tests for parameter instability in ordinal factor models.
We present a novel approach for computing model scores for ordinal factor models, that is, graded response models (GRMs) fitted with a limited information (LI) estimator. The method makes it possible to compute score-based tests for parameter instability for ordinal factor models. This way, rapid execution of numerous parameter instability tests for multidimensional item response theory (MIRT) models is facilitated. We present a comparative analysis of the performance of the proposed score-based tests for ordinal factor models in comparison to tests for GRMs fitted with a full information (FI) estimator. The new method has a good Type I error rate, high power and is computationally faster than FI estimation. We further illustrate that the proposed method works well with complex models in real data applications. The method is implemented in the lavaan package in R.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.