利用无浆细胞DNA的多维特征准确高效地检测鼻咽癌。

IF 2.3 3区 医学 Q1 OTORHINOLARYNGOLOGY
Song Zhang, Jiahui Tang, Pin Cui, Weihuang He, Xiaohui Lin, Shubing Wang, Yuanxian Liu, Xiaohua Tan, Shu Xu, Mingji Feng, Hanming Lai
{"title":"利用无浆细胞DNA的多维特征准确高效地检测鼻咽癌。","authors":"Song Zhang, Jiahui Tang, Pin Cui, Weihuang He, Xiaohui Lin, Shubing Wang, Yuanxian Liu, Xiaohua Tan, Shu Xu, Mingji Feng, Hanming Lai","doi":"10.1002/hed.28154","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The incidence of Nasopharyngeal carcinoma (NPC) is rising in recent years, especially in some non-developed parts of the world. Hence, cost-efficient means for sensitive detection of NPC are vital.</p><p><strong>Methods: </strong>We recruited 646 participants, including healthy individuals, patients with benign nasopharyngeal diseases, and NPC patients for plasma cell-free DNA(cfDNA), which underwent low-depth whole-genome sequencing (WGS) to extract multi-dimensional molecular features, including fragmentation pattern, end motif, copy number variation(CNV), and transcription factors(TF). Based on these features, we employed a machine learning algorithm to build prediction models for NPC detection.</p><p><strong>Results: </strong>We achieved a sensitivity of 95.8% and a specificity of 99.4% to discriminate NPC patients from healthy individuals.</p><p><strong>Conclusions: </strong>This study can be a proof-of-concept for these multi-dimensional molecular features to be implemented as a noninvasive approach for the detection and even early detection of NPC.</p>","PeriodicalId":55072,"journal":{"name":"Head and Neck-Journal for the Sciences and Specialties of the Head and Neck","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and Efficient Detection of Nasopharyngeal Carcinoma Using Multi-Dimensional Features of Plasma Cell-Free DNA.\",\"authors\":\"Song Zhang, Jiahui Tang, Pin Cui, Weihuang He, Xiaohui Lin, Shubing Wang, Yuanxian Liu, Xiaohua Tan, Shu Xu, Mingji Feng, Hanming Lai\",\"doi\":\"10.1002/hed.28154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The incidence of Nasopharyngeal carcinoma (NPC) is rising in recent years, especially in some non-developed parts of the world. Hence, cost-efficient means for sensitive detection of NPC are vital.</p><p><strong>Methods: </strong>We recruited 646 participants, including healthy individuals, patients with benign nasopharyngeal diseases, and NPC patients for plasma cell-free DNA(cfDNA), which underwent low-depth whole-genome sequencing (WGS) to extract multi-dimensional molecular features, including fragmentation pattern, end motif, copy number variation(CNV), and transcription factors(TF). Based on these features, we employed a machine learning algorithm to build prediction models for NPC detection.</p><p><strong>Results: </strong>We achieved a sensitivity of 95.8% and a specificity of 99.4% to discriminate NPC patients from healthy individuals.</p><p><strong>Conclusions: </strong>This study can be a proof-of-concept for these multi-dimensional molecular features to be implemented as a noninvasive approach for the detection and even early detection of NPC.</p>\",\"PeriodicalId\":55072,\"journal\":{\"name\":\"Head and Neck-Journal for the Sciences and Specialties of the Head and Neck\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Head and Neck-Journal for the Sciences and Specialties of the Head and Neck\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/hed.28154\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OTORHINOLARYNGOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and Neck-Journal for the Sciences and Specialties of the Head and Neck","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/hed.28154","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:近年来,鼻咽癌(NPC)的发病率呈上升趋势,特别是在世界上一些不发达地区。因此,具有成本效益的方法对鼻咽癌的敏感检测至关重要。方法:招募健康个体、良性鼻咽疾病患者和鼻咽癌患者共646人,进行血浆游离DNA(cfDNA)的低深度全基因组测序(WGS),提取包括片段模式、末端基序、拷贝数变异(CNV)和转录因子(TF)在内的多维分子特征。基于这些特征,我们使用机器学习算法来构建NPC检测的预测模型。结果:我们将鼻咽癌患者与健康人区分开来的灵敏度为95.8%,特异性为99.4%。结论:本研究可以证明这些多维分子特征可以作为一种无创检测方法,甚至可以作为鼻咽癌的早期检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate and Efficient Detection of Nasopharyngeal Carcinoma Using Multi-Dimensional Features of Plasma Cell-Free DNA.

Background: The incidence of Nasopharyngeal carcinoma (NPC) is rising in recent years, especially in some non-developed parts of the world. Hence, cost-efficient means for sensitive detection of NPC are vital.

Methods: We recruited 646 participants, including healthy individuals, patients with benign nasopharyngeal diseases, and NPC patients for plasma cell-free DNA(cfDNA), which underwent low-depth whole-genome sequencing (WGS) to extract multi-dimensional molecular features, including fragmentation pattern, end motif, copy number variation(CNV), and transcription factors(TF). Based on these features, we employed a machine learning algorithm to build prediction models for NPC detection.

Results: We achieved a sensitivity of 95.8% and a specificity of 99.4% to discriminate NPC patients from healthy individuals.

Conclusions: This study can be a proof-of-concept for these multi-dimensional molecular features to be implemented as a noninvasive approach for the detection and even early detection of NPC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
6.90%
发文量
278
审稿时长
1.6 months
期刊介绍: Head & Neck is an international multidisciplinary publication of original contributions concerning the diagnosis and management of diseases of the head and neck. This area involves the overlapping interests and expertise of several surgical and medical specialties, including general surgery, neurosurgery, otolaryngology, plastic surgery, oral surgery, dermatology, ophthalmology, pathology, radiotherapy, medical oncology, and the corresponding basic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信