{"title":"外周淋巴系统B细胞的蛋白质组学分析揭示了系统性红斑狼疮进展过程中的动力学。","authors":"Liming Sun, Yuanyuan Yin, Yuqing Cao, Chunlei Chen, Yutong Guo, Zeming Cai, Jiarui Wu, Qingrun Li","doi":"10.52601/bpr.2024.240045","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we conducted a comprehensive proteomic analysis of B cells from the spleen, mesenteric lymph nodes (mLN), and peripheral blood mononuclear cells (PBMC) in a time-course model of systemic lupus erythematosus (SLE) using female MRL/lpr mice. By combining fluorescence-activated cell sorting (FACS) and 4D-Data-Independent Acquisition (4D-DIA) mass spectrometry, we quantified nearly 8000 proteins, identifying significant temporal and tissue-specific proteomic changes during SLE progression. PBMC-derived B cells exhibited early proteomic alterations by Week 9, while spleen-derived B cells showed similar changes by Week 12. We identified key regulatory proteins, including BAFF, BAFFR, and NFKB2, involved in B cell survival and activation, as well as novel markers such as CD11c and CD117, which have previously been associated with other immune cells. The study highlights the dynamic reprogramming of B cell proteomes across different tissues, with distinct contributions to SLE pathogenesis, providing valuable insights into the molecular mechanisms underlying B cell dysregulation in lupus. These findings offer potential therapeutic targets and biomarkers for SLE.</p>","PeriodicalId":93906,"journal":{"name":"Biophysics reports","volume":"11 2","pages":"129-142"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035744/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proteomic analysis of B cells in peripheral lymphatic system reveals the dynamics during the systemic lupus erythematosus progression.\",\"authors\":\"Liming Sun, Yuanyuan Yin, Yuqing Cao, Chunlei Chen, Yutong Guo, Zeming Cai, Jiarui Wu, Qingrun Li\",\"doi\":\"10.52601/bpr.2024.240045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we conducted a comprehensive proteomic analysis of B cells from the spleen, mesenteric lymph nodes (mLN), and peripheral blood mononuclear cells (PBMC) in a time-course model of systemic lupus erythematosus (SLE) using female MRL/lpr mice. By combining fluorescence-activated cell sorting (FACS) and 4D-Data-Independent Acquisition (4D-DIA) mass spectrometry, we quantified nearly 8000 proteins, identifying significant temporal and tissue-specific proteomic changes during SLE progression. PBMC-derived B cells exhibited early proteomic alterations by Week 9, while spleen-derived B cells showed similar changes by Week 12. We identified key regulatory proteins, including BAFF, BAFFR, and NFKB2, involved in B cell survival and activation, as well as novel markers such as CD11c and CD117, which have previously been associated with other immune cells. The study highlights the dynamic reprogramming of B cell proteomes across different tissues, with distinct contributions to SLE pathogenesis, providing valuable insights into the molecular mechanisms underlying B cell dysregulation in lupus. These findings offer potential therapeutic targets and biomarkers for SLE.</p>\",\"PeriodicalId\":93906,\"journal\":{\"name\":\"Biophysics reports\",\"volume\":\"11 2\",\"pages\":\"129-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035744/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysics reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52601/bpr.2024.240045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2024.240045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proteomic analysis of B cells in peripheral lymphatic system reveals the dynamics during the systemic lupus erythematosus progression.
In this study, we conducted a comprehensive proteomic analysis of B cells from the spleen, mesenteric lymph nodes (mLN), and peripheral blood mononuclear cells (PBMC) in a time-course model of systemic lupus erythematosus (SLE) using female MRL/lpr mice. By combining fluorescence-activated cell sorting (FACS) and 4D-Data-Independent Acquisition (4D-DIA) mass spectrometry, we quantified nearly 8000 proteins, identifying significant temporal and tissue-specific proteomic changes during SLE progression. PBMC-derived B cells exhibited early proteomic alterations by Week 9, while spleen-derived B cells showed similar changes by Week 12. We identified key regulatory proteins, including BAFF, BAFFR, and NFKB2, involved in B cell survival and activation, as well as novel markers such as CD11c and CD117, which have previously been associated with other immune cells. The study highlights the dynamic reprogramming of B cell proteomes across different tissues, with distinct contributions to SLE pathogenesis, providing valuable insights into the molecular mechanisms underlying B cell dysregulation in lupus. These findings offer potential therapeutic targets and biomarkers for SLE.