{"title":"氧化还原反应聚合物的化学燃料相变。","authors":"Takafumi Enomoto, Aya M Akimoto, Ryo Yoshida","doi":"10.1080/14686996.2025.2494496","DOIUrl":null,"url":null,"abstract":"<p><p>In living systems, dynamic biomacromolecular assemblies are driven and regulated by energy dissipative chemical reaction networks, enabling various autonomous functions. Inspired by this biological principle, we report a chemically-fueled phase transition of a poly(<i>N</i>-isopropylacrylamide) (PNIPAAm)-based polymer bearing viologen units (P(NIPAAm-V)), wherein redox changes drive coil-to-globule phase transitions. Upon the addition of a reducing agent, viologen moieties in P(NIPAAm-V) are converted into their reduced state, resulting in enhanced hydrophobicity and polymer aggregation. Coexistence of a platinum catalyst couples these redox-driven structural changes to hydrogen evolution, which oxidizes the viologen radicals, thus restoring the polymer chains to their hydrated random coil state. As a result, transient polymer assemblies form and subsequently disassemble upon depletion of the reducing agent, leading to a temporally controlled out-of-equilibrium phase transition. Moreover, by tuning the platinum concentration and reaction temperature, we achieve precise control of both the size and lifetime of these assemblies. Notably, viologen moieties constitute only about 1% of the polymer repeating units, underscoring that chemically-fueled phase transition is efficient strategy for dynamically regulating molecular assemblies. These findings demonstrate that chemically-fueled phase transitions in redox-responsive polymers offer a promising blueprint for designing dynamic, biomimetic materials capable of spatiotemporally regulated structural transformations.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2494496"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chemically-fueled phase transition of a redox-responsive polymer.\",\"authors\":\"Takafumi Enomoto, Aya M Akimoto, Ryo Yoshida\",\"doi\":\"10.1080/14686996.2025.2494496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In living systems, dynamic biomacromolecular assemblies are driven and regulated by energy dissipative chemical reaction networks, enabling various autonomous functions. Inspired by this biological principle, we report a chemically-fueled phase transition of a poly(<i>N</i>-isopropylacrylamide) (PNIPAAm)-based polymer bearing viologen units (P(NIPAAm-V)), wherein redox changes drive coil-to-globule phase transitions. Upon the addition of a reducing agent, viologen moieties in P(NIPAAm-V) are converted into their reduced state, resulting in enhanced hydrophobicity and polymer aggregation. Coexistence of a platinum catalyst couples these redox-driven structural changes to hydrogen evolution, which oxidizes the viologen radicals, thus restoring the polymer chains to their hydrated random coil state. As a result, transient polymer assemblies form and subsequently disassemble upon depletion of the reducing agent, leading to a temporally controlled out-of-equilibrium phase transition. Moreover, by tuning the platinum concentration and reaction temperature, we achieve precise control of both the size and lifetime of these assemblies. Notably, viologen moieties constitute only about 1% of the polymer repeating units, underscoring that chemically-fueled phase transition is efficient strategy for dynamically regulating molecular assemblies. These findings demonstrate that chemically-fueled phase transitions in redox-responsive polymers offer a promising blueprint for designing dynamic, biomimetic materials capable of spatiotemporally regulated structural transformations.</p>\",\"PeriodicalId\":21588,\"journal\":{\"name\":\"Science and Technology of Advanced Materials\",\"volume\":\"26 1\",\"pages\":\"2494496\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/14686996.2025.2494496\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2494496","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemically-fueled phase transition of a redox-responsive polymer.
In living systems, dynamic biomacromolecular assemblies are driven and regulated by energy dissipative chemical reaction networks, enabling various autonomous functions. Inspired by this biological principle, we report a chemically-fueled phase transition of a poly(N-isopropylacrylamide) (PNIPAAm)-based polymer bearing viologen units (P(NIPAAm-V)), wherein redox changes drive coil-to-globule phase transitions. Upon the addition of a reducing agent, viologen moieties in P(NIPAAm-V) are converted into their reduced state, resulting in enhanced hydrophobicity and polymer aggregation. Coexistence of a platinum catalyst couples these redox-driven structural changes to hydrogen evolution, which oxidizes the viologen radicals, thus restoring the polymer chains to their hydrated random coil state. As a result, transient polymer assemblies form and subsequently disassemble upon depletion of the reducing agent, leading to a temporally controlled out-of-equilibrium phase transition. Moreover, by tuning the platinum concentration and reaction temperature, we achieve precise control of both the size and lifetime of these assemblies. Notably, viologen moieties constitute only about 1% of the polymer repeating units, underscoring that chemically-fueled phase transition is efficient strategy for dynamically regulating molecular assemblies. These findings demonstrate that chemically-fueled phase transitions in redox-responsive polymers offer a promising blueprint for designing dynamic, biomimetic materials capable of spatiotemporally regulated structural transformations.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.