RePower:一个llm驱动的电力系统数据导向研究自主平台。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-03-31 eCollection Date: 2025-04-11 DOI:10.1016/j.patter.2025.101211
Yu-Xiao Liu, Mengshuo Jia, Yong-Xin Zhang, Jianxiao Wang, Guannan He, Shao-Long Zhong, Zhi-Min Dang
{"title":"RePower:一个llm驱动的电力系统数据导向研究自主平台。","authors":"Yu-Xiao Liu, Mengshuo Jia, Yong-Xin Zhang, Jianxiao Wang, Guannan He, Shao-Long Zhong, Zhi-Min Dang","doi":"10.1016/j.patter.2025.101211","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs) have shown strong capabilities across disciplines such as chemistry, mathematics, and medicine, yet their application in power system research remains limited, and most studies still focus on supporting specific tasks under human supervision. Here, we introduce Revive Power Systems (RePower), an autonomous LLM-driven research platform that uses a reflection-evolution strategy to independently conduct complex research in power systems. RePower assists researchers by controlling devices, acquiring data, designing methods, and evolving algorithms to address problems that are difficult to solve but easy to evaluate. Validated on three critical data-driven tasks in power systems-parameter prediction, power optimization, and state estimation-RePower outperformed traditional methods. Consistent performance improvements were observed across multiple tasks, with an average error reduction of 29.07%. For example, in the power optimization task, the error decreased from 0.00137 to 0.000825, a reduction of 39.78%. This framework facilitates autonomous discoveries, promoting innovation in power systems research.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 4","pages":"101211"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010440/pdf/","citationCount":"0","resultStr":"{\"title\":\"RePower: An LLM-driven autonomous platform for power system data-guided research.\",\"authors\":\"Yu-Xiao Liu, Mengshuo Jia, Yong-Xin Zhang, Jianxiao Wang, Guannan He, Shao-Long Zhong, Zhi-Min Dang\",\"doi\":\"10.1016/j.patter.2025.101211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large language models (LLMs) have shown strong capabilities across disciplines such as chemistry, mathematics, and medicine, yet their application in power system research remains limited, and most studies still focus on supporting specific tasks under human supervision. Here, we introduce Revive Power Systems (RePower), an autonomous LLM-driven research platform that uses a reflection-evolution strategy to independently conduct complex research in power systems. RePower assists researchers by controlling devices, acquiring data, designing methods, and evolving algorithms to address problems that are difficult to solve but easy to evaluate. Validated on three critical data-driven tasks in power systems-parameter prediction, power optimization, and state estimation-RePower outperformed traditional methods. Consistent performance improvements were observed across multiple tasks, with an average error reduction of 29.07%. For example, in the power optimization task, the error decreased from 0.00137 to 0.000825, a reduction of 39.78%. This framework facilitates autonomous discoveries, promoting innovation in power systems research.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 4\",\"pages\":\"101211\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2025.101211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)在化学、数学和医学等学科中表现出强大的能力,但在电力系统研究中的应用仍然有限,大多数研究仍然集中在人类监督下支持特定任务。在这里,我们介绍Revive Power Systems (RePower),这是一个自主的llm驱动的研究平台,它使用反射进化策略独立进行电力系统的复杂研究。RePower通过控制设备,获取数据,设计方法和不断发展的算法来帮助研究人员解决难以解决但易于评估的问题。通过对电力系统参数预测、功率优化和状态估计三个关键数据驱动任务的验证,repower优于传统方法。在多个任务中观察到一致的性能改进,平均错误减少了29.07%。例如,在功率优化任务中,误差从0.00137降低到0.000825,降低了39.78%。这一框架有利于自主发现,促进电力系统研究的创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RePower: An LLM-driven autonomous platform for power system data-guided research.

Large language models (LLMs) have shown strong capabilities across disciplines such as chemistry, mathematics, and medicine, yet their application in power system research remains limited, and most studies still focus on supporting specific tasks under human supervision. Here, we introduce Revive Power Systems (RePower), an autonomous LLM-driven research platform that uses a reflection-evolution strategy to independently conduct complex research in power systems. RePower assists researchers by controlling devices, acquiring data, designing methods, and evolving algorithms to address problems that are difficult to solve but easy to evaluate. Validated on three critical data-driven tasks in power systems-parameter prediction, power optimization, and state estimation-RePower outperformed traditional methods. Consistent performance improvements were observed across multiple tasks, with an average error reduction of 29.07%. For example, in the power optimization task, the error decreased from 0.00137 to 0.000825, a reduction of 39.78%. This framework facilitates autonomous discoveries, promoting innovation in power systems research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信