利用大数据和人工智能洞察交通二氧化碳排放。

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Patterns Pub Date : 2025-03-03 eCollection Date: 2025-04-11 DOI:10.1016/j.patter.2025.101186
Zhenyu Luo, Tingkun He, Zhaofeng Lv, Junchao Zhao, Zhining Zhang, Yongyue Wang, Wen Yi, Shangshang Lu, Kebin He, Huan Liu
{"title":"利用大数据和人工智能洞察交通二氧化碳排放。","authors":"Zhenyu Luo, Tingkun He, Zhaofeng Lv, Junchao Zhao, Zhining Zhang, Yongyue Wang, Wen Yi, Shangshang Lu, Kebin He, Huan Liu","doi":"10.1016/j.patter.2025.101186","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing stream of big data offers potential for deep decarbonization in the transportation sector but also presents challenges in extracting interpretable insights due to its complexity and volume. This overview discusses the application of transportation big data to help understand carbon dioxide emissions and introduces how artificial intelligence models, including machine learning (ML) and deep learning (DL), are used to assimilate and understand these data. We suggest using ML to interpret low-dimensional data and DL to enhance the predictability of data with spatial connections across multiple timescales. Overcoming challenges related to algorithms, data, and computation requires interdisciplinary collaboration on both technology and data.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 4","pages":"101186"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010448/pdf/","citationCount":"0","resultStr":"{\"title\":\"Insights into transportation CO<sub>2</sub> emissions with big data and artificial intelligence.\",\"authors\":\"Zhenyu Luo, Tingkun He, Zhaofeng Lv, Junchao Zhao, Zhining Zhang, Yongyue Wang, Wen Yi, Shangshang Lu, Kebin He, Huan Liu\",\"doi\":\"10.1016/j.patter.2025.101186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ever-increasing stream of big data offers potential for deep decarbonization in the transportation sector but also presents challenges in extracting interpretable insights due to its complexity and volume. This overview discusses the application of transportation big data to help understand carbon dioxide emissions and introduces how artificial intelligence models, including machine learning (ML) and deep learning (DL), are used to assimilate and understand these data. We suggest using ML to interpret low-dimensional data and DL to enhance the predictability of data with spatial connections across multiple timescales. Overcoming challenges related to algorithms, data, and computation requires interdisciplinary collaboration on both technology and data.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"6 4\",\"pages\":\"101186\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2025.101186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

不断增长的大数据流为交通运输部门的深度脱碳提供了潜力,但由于其复杂性和数量,在提取可解释的见解方面也提出了挑战。本综述讨论了交通大数据在帮助了解二氧化碳排放方面的应用,并介绍了如何使用人工智能模型,包括机器学习(ML)和深度学习(DL)来吸收和理解这些数据。我们建议使用机器学习来解释低维数据,使用深度学习来增强具有多个时间尺度空间连接的数据的可预测性。克服与算法、数据和计算相关的挑战需要在技术和数据方面进行跨学科合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into transportation CO2 emissions with big data and artificial intelligence.

The ever-increasing stream of big data offers potential for deep decarbonization in the transportation sector but also presents challenges in extracting interpretable insights due to its complexity and volume. This overview discusses the application of transportation big data to help understand carbon dioxide emissions and introduces how artificial intelligence models, including machine learning (ML) and deep learning (DL), are used to assimilate and understand these data. We suggest using ML to interpret low-dimensional data and DL to enhance the predictability of data with spatial connections across multiple timescales. Overcoming challenges related to algorithms, data, and computation requires interdisciplinary collaboration on both technology and data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信