Frederick Klauschen, Jonas Dippel, Klaus-Robert Müller
{"title":"[病理学基础模型]。","authors":"Frederick Klauschen, Jonas Dippel, Klaus-Robert Müller","doi":"10.1007/s00292-025-01429-7","DOIUrl":null,"url":null,"abstract":"<p><p>Foundation models prepare neural networks for applications in specific domains, such as speech applications or image analysis, through self-supervised pretraining. These models can be adapted for specific applications, such as histopathological diagnostics. While adaptation still requires supervised training, AI applications based on foundation models achieve significantly better prediction accuracy with fewer training data compared to conventional approaches. This article introduces the topic and provides an overview of foundation models in pathology.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":"46 3","pages":"152-155"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Foundation models in pathology].\",\"authors\":\"Frederick Klauschen, Jonas Dippel, Klaus-Robert Müller\",\"doi\":\"10.1007/s00292-025-01429-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Foundation models prepare neural networks for applications in specific domains, such as speech applications or image analysis, through self-supervised pretraining. These models can be adapted for specific applications, such as histopathological diagnostics. While adaptation still requires supervised training, AI applications based on foundation models achieve significantly better prediction accuracy with fewer training data compared to conventional approaches. This article introduces the topic and provides an overview of foundation models in pathology.</p>\",\"PeriodicalId\":74402,\"journal\":{\"name\":\"Pathologie (Heidelberg, Germany)\",\"volume\":\"46 3\",\"pages\":\"152-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathologie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00292-025-01429-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-025-01429-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Foundation models prepare neural networks for applications in specific domains, such as speech applications or image analysis, through self-supervised pretraining. These models can be adapted for specific applications, such as histopathological diagnostics. While adaptation still requires supervised training, AI applications based on foundation models achieve significantly better prediction accuracy with fewer training data compared to conventional approaches. This article introduces the topic and provides an overview of foundation models in pathology.