Chen-Guang Liu, Mei-Xi Lin, Yu Xin, Man Sun, Jia Cui, Dan Liu, Dan Zang, Jun Chen
{"title":"宏基因组学和非靶向代谢组学揭示肠道微生物群及其代谢物在非小细胞肺癌脑转移中的作用","authors":"Chen-Guang Liu, Mei-Xi Lin, Yu Xin, Man Sun, Jia Cui, Dan Liu, Dan Zang, Jun Chen","doi":"10.1111/1759-7714.70068","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Brain metastasis is a common and severe complication in non-small cell lung cancer (NSCLC) patients, significantly affecting prognosis. However, the role of gut microbiota and its metabolites in NSCLC brain metastasis remains poorly understood. This study aims to explore the relationship between gut microbiota, metabolites, and the development of brain metastasis in NSCLC.</p><p><strong>Methods: </strong>We conducted an integrative analysis combining metagenomics and non-targeted metabolomics on baseline fecal samples from NSCLC patients with brain metastasis (n = 18) and those without distant metastasis (n = 12). Gut microbiota composition and metabolite profiles were detected and analyzed, and statistical methods, including machine learning models, were applied to identify differences and potential biomarkers.</p><p><strong>Results: </strong>Significant differences in gut microbiota composition were found between the two groups, with higher microbial diversity observed in patients with brain metastasis. Specific genera, such as Paenibacillus, Fournierella, and Adlercreutzia, were enriched in the brain metastasis group. Metabolomic analysis revealed altered levels of short-chain fatty acids and other metabolites associated with immune modulation and vascular permeability, including angiotensin (1-7). These changes were linked to the metastatic process and may influence brain metastasis development. Furthermore, machine learning models identified key biomarkers, such as Raoultibacter, Mobilibacterium, and N-acetyl-L-glutamic acid, which could serve as valuable indicators for brain metastasis.</p><p><strong>Conclusions: </strong>Our findings suggest that gut microbiota dysbiosis and its metabolic products may contribute to the development of brain metastasis in NSCLC. The identification of microbiota-derived biomarkers holds potential for early detection and therapeutic intervention in NSCLC brain metastasis.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":"16 8","pages":"e70068"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014518/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metagenomics and Non-Targeted Metabolomics Reveal the Role of Gut Microbiota and Its Metabolites in Brain Metastasis of Non-Small Cell Lung Cancer.\",\"authors\":\"Chen-Guang Liu, Mei-Xi Lin, Yu Xin, Man Sun, Jia Cui, Dan Liu, Dan Zang, Jun Chen\",\"doi\":\"10.1111/1759-7714.70068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Brain metastasis is a common and severe complication in non-small cell lung cancer (NSCLC) patients, significantly affecting prognosis. However, the role of gut microbiota and its metabolites in NSCLC brain metastasis remains poorly understood. This study aims to explore the relationship between gut microbiota, metabolites, and the development of brain metastasis in NSCLC.</p><p><strong>Methods: </strong>We conducted an integrative analysis combining metagenomics and non-targeted metabolomics on baseline fecal samples from NSCLC patients with brain metastasis (n = 18) and those without distant metastasis (n = 12). Gut microbiota composition and metabolite profiles were detected and analyzed, and statistical methods, including machine learning models, were applied to identify differences and potential biomarkers.</p><p><strong>Results: </strong>Significant differences in gut microbiota composition were found between the two groups, with higher microbial diversity observed in patients with brain metastasis. Specific genera, such as Paenibacillus, Fournierella, and Adlercreutzia, were enriched in the brain metastasis group. Metabolomic analysis revealed altered levels of short-chain fatty acids and other metabolites associated with immune modulation and vascular permeability, including angiotensin (1-7). These changes were linked to the metastatic process and may influence brain metastasis development. Furthermore, machine learning models identified key biomarkers, such as Raoultibacter, Mobilibacterium, and N-acetyl-L-glutamic acid, which could serve as valuable indicators for brain metastasis.</p><p><strong>Conclusions: </strong>Our findings suggest that gut microbiota dysbiosis and its metabolic products may contribute to the development of brain metastasis in NSCLC. The identification of microbiota-derived biomarkers holds potential for early detection and therapeutic intervention in NSCLC brain metastasis.</p>\",\"PeriodicalId\":23338,\"journal\":{\"name\":\"Thoracic Cancer\",\"volume\":\"16 8\",\"pages\":\"e70068\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014518/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thoracic Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1759-7714.70068\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.70068","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Metagenomics and Non-Targeted Metabolomics Reveal the Role of Gut Microbiota and Its Metabolites in Brain Metastasis of Non-Small Cell Lung Cancer.
Background: Brain metastasis is a common and severe complication in non-small cell lung cancer (NSCLC) patients, significantly affecting prognosis. However, the role of gut microbiota and its metabolites in NSCLC brain metastasis remains poorly understood. This study aims to explore the relationship between gut microbiota, metabolites, and the development of brain metastasis in NSCLC.
Methods: We conducted an integrative analysis combining metagenomics and non-targeted metabolomics on baseline fecal samples from NSCLC patients with brain metastasis (n = 18) and those without distant metastasis (n = 12). Gut microbiota composition and metabolite profiles were detected and analyzed, and statistical methods, including machine learning models, were applied to identify differences and potential biomarkers.
Results: Significant differences in gut microbiota composition were found between the two groups, with higher microbial diversity observed in patients with brain metastasis. Specific genera, such as Paenibacillus, Fournierella, and Adlercreutzia, were enriched in the brain metastasis group. Metabolomic analysis revealed altered levels of short-chain fatty acids and other metabolites associated with immune modulation and vascular permeability, including angiotensin (1-7). These changes were linked to the metastatic process and may influence brain metastasis development. Furthermore, machine learning models identified key biomarkers, such as Raoultibacter, Mobilibacterium, and N-acetyl-L-glutamic acid, which could serve as valuable indicators for brain metastasis.
Conclusions: Our findings suggest that gut microbiota dysbiosis and its metabolic products may contribute to the development of brain metastasis in NSCLC. The identification of microbiota-derived biomarkers holds potential for early detection and therapeutic intervention in NSCLC brain metastasis.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.