了解登革热的当地决定因素:印度尼西亚日惹的地理加权面板回归方法。

IF 3.6 Q1 TROPICAL MEDICINE
Marko Ferdian Salim, Tri Baskoro Tunggul Satoto, Danardono
{"title":"了解登革热的当地决定因素:印度尼西亚日惹的地理加权面板回归方法。","authors":"Marko Ferdian Salim, Tri Baskoro Tunggul Satoto, Danardono","doi":"10.1186/s41182-025-00734-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dengue remains a major public health concern in tropical regions, including Yogyakarta, Indonesia. Understanding its spatiotemporal patterns and determinants is crucial for effective prevention strategies. This study explores the spatiotemporal determinants of dengue incidence and evaluates the spatial variability of predictors using a geographically weighted panel regression (GWPR) approach.</p><p><strong>Methods: </strong>This ecological study applied a spatiotemporal approach, analyzing dengue incidence across 78 sub-districts in Yogyakarta from 2017 to 2022. The dataset included meteorological variables (rainfall, temperature, humidity, wind speed, and atmospheric pressure), sociodemographic data (population density), and land-use characteristics (built-up areas, crops, trees, water bodies, and flooded vegetation). A GWPR model with a Fixed Exponential kernel was used to assess local variations in predictor influence.</p><p><strong>Results: </strong>The Fixed Exponential Kernel GWPR model showed strong explanatory power (Adjusted R<sup>2</sup> = 0.516, RSS = 43,097.96, AIC = 28,447.38). Local R-Square values ranged from 0.25 (low-performing sub-districts) to 0.75 (high-performing sub-districts), indicating significant spatial heterogeneity. Sub-districts such as Pakem, Cangkringan, and Girimulyo exhibited high local R<sup>2</sup> values (>0.75), indicating robust model performance, whereas Kalibawang showed lower values (<0.25), suggesting weaker predictive power. High-dengue-burden sub-districts, including Kasihan (0.743), Banguntapan (0.731), Sewon (0.716), Wonosari (0.623), and Wates (0.540), demonstrated stronger associations between dengue incidence and key predictors. In Wonosari, the most influential predictors were Rainfall Lag 1, Rainfall Lag 3, temperature, humidity, wind speed, atmospheric pressure, and land-use variables, while in Wates, significant predictors included Rainfall Lag 1, Rainfall Lag 3, atmospheric pressure, and land-use factors. Lower model performance in Sedayu and Kalibawang suggests the necessity of incorporating additional predictors such as sanitation conditions and vector control activities.</p><p><strong>Conclusions: </strong>The GWPR model provides valuable insights into the spatiotemporal dynamics of dengue incidence, emphasizing the role of localized predictors. Spatially adaptive prevention strategies focusing on high-risk areas are essential for effective dengue control in Yogyakarta and similar tropical regions.</p>","PeriodicalId":23311,"journal":{"name":"Tropical Medicine and Health","volume":"53 1","pages":"54"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995575/pdf/","citationCount":"0","resultStr":"{\"title\":\"Understanding local determinants of dengue: a geographically weighted panel regression approach in Yogyakarta, Indonesia.\",\"authors\":\"Marko Ferdian Salim, Tri Baskoro Tunggul Satoto, Danardono\",\"doi\":\"10.1186/s41182-025-00734-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dengue remains a major public health concern in tropical regions, including Yogyakarta, Indonesia. Understanding its spatiotemporal patterns and determinants is crucial for effective prevention strategies. This study explores the spatiotemporal determinants of dengue incidence and evaluates the spatial variability of predictors using a geographically weighted panel regression (GWPR) approach.</p><p><strong>Methods: </strong>This ecological study applied a spatiotemporal approach, analyzing dengue incidence across 78 sub-districts in Yogyakarta from 2017 to 2022. The dataset included meteorological variables (rainfall, temperature, humidity, wind speed, and atmospheric pressure), sociodemographic data (population density), and land-use characteristics (built-up areas, crops, trees, water bodies, and flooded vegetation). A GWPR model with a Fixed Exponential kernel was used to assess local variations in predictor influence.</p><p><strong>Results: </strong>The Fixed Exponential Kernel GWPR model showed strong explanatory power (Adjusted R<sup>2</sup> = 0.516, RSS = 43,097.96, AIC = 28,447.38). Local R-Square values ranged from 0.25 (low-performing sub-districts) to 0.75 (high-performing sub-districts), indicating significant spatial heterogeneity. Sub-districts such as Pakem, Cangkringan, and Girimulyo exhibited high local R<sup>2</sup> values (>0.75), indicating robust model performance, whereas Kalibawang showed lower values (<0.25), suggesting weaker predictive power. High-dengue-burden sub-districts, including Kasihan (0.743), Banguntapan (0.731), Sewon (0.716), Wonosari (0.623), and Wates (0.540), demonstrated stronger associations between dengue incidence and key predictors. In Wonosari, the most influential predictors were Rainfall Lag 1, Rainfall Lag 3, temperature, humidity, wind speed, atmospheric pressure, and land-use variables, while in Wates, significant predictors included Rainfall Lag 1, Rainfall Lag 3, atmospheric pressure, and land-use factors. Lower model performance in Sedayu and Kalibawang suggests the necessity of incorporating additional predictors such as sanitation conditions and vector control activities.</p><p><strong>Conclusions: </strong>The GWPR model provides valuable insights into the spatiotemporal dynamics of dengue incidence, emphasizing the role of localized predictors. Spatially adaptive prevention strategies focusing on high-risk areas are essential for effective dengue control in Yogyakarta and similar tropical regions.</p>\",\"PeriodicalId\":23311,\"journal\":{\"name\":\"Tropical Medicine and Health\",\"volume\":\"53 1\",\"pages\":\"54\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995575/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Medicine and Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41182-025-00734-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TROPICAL MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41182-025-00734-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TROPICAL MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

背景:登革热仍然是包括印度尼西亚日惹在内的热带地区的一个主要公共卫生问题。了解其时空格局和决定因素对于有效的预防策略至关重要。本研究探讨登革热发病率的时空决定因素,并使用地理加权面板回归(GWPR)方法评估预测因子的空间变异性。方法:本生态研究采用时空分析方法,分析2017 - 2022年日惹市78个街道登革热发病率。该数据集包括气象变量(降雨量、温度、湿度、风速和大气压)、社会人口数据(人口密度)和土地利用特征(建成区、作物、树木、水体和淹水植被)。使用固定指数核的GWPR模型来评估预测器影响的局部变化。结果:固定指数核GWPR模型具有较强的解释力(调整后R2 = 0.516, RSS = 43,097.96, AIC = 28,447.38)。区域r平方值从0.25(低绩效街道)到0.75(高绩效街道)不等,显示出显著的空间异质性。Pakem、Cangkringan和Girimulyo等街道显示出较高的局部R2值(>0.75),表明模型性能稳健,而Kalibawang显示出较低的值(结论:GWPR模型为登革热发病率的时空动态提供了有价值的见解,强调了局部预测因子的作用。以高风险地区为重点的空间适应性预防战略对于日惹和类似热带地区有效控制登革热至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding local determinants of dengue: a geographically weighted panel regression approach in Yogyakarta, Indonesia.

Background: Dengue remains a major public health concern in tropical regions, including Yogyakarta, Indonesia. Understanding its spatiotemporal patterns and determinants is crucial for effective prevention strategies. This study explores the spatiotemporal determinants of dengue incidence and evaluates the spatial variability of predictors using a geographically weighted panel regression (GWPR) approach.

Methods: This ecological study applied a spatiotemporal approach, analyzing dengue incidence across 78 sub-districts in Yogyakarta from 2017 to 2022. The dataset included meteorological variables (rainfall, temperature, humidity, wind speed, and atmospheric pressure), sociodemographic data (population density), and land-use characteristics (built-up areas, crops, trees, water bodies, and flooded vegetation). A GWPR model with a Fixed Exponential kernel was used to assess local variations in predictor influence.

Results: The Fixed Exponential Kernel GWPR model showed strong explanatory power (Adjusted R2 = 0.516, RSS = 43,097.96, AIC = 28,447.38). Local R-Square values ranged from 0.25 (low-performing sub-districts) to 0.75 (high-performing sub-districts), indicating significant spatial heterogeneity. Sub-districts such as Pakem, Cangkringan, and Girimulyo exhibited high local R2 values (>0.75), indicating robust model performance, whereas Kalibawang showed lower values (<0.25), suggesting weaker predictive power. High-dengue-burden sub-districts, including Kasihan (0.743), Banguntapan (0.731), Sewon (0.716), Wonosari (0.623), and Wates (0.540), demonstrated stronger associations between dengue incidence and key predictors. In Wonosari, the most influential predictors were Rainfall Lag 1, Rainfall Lag 3, temperature, humidity, wind speed, atmospheric pressure, and land-use variables, while in Wates, significant predictors included Rainfall Lag 1, Rainfall Lag 3, atmospheric pressure, and land-use factors. Lower model performance in Sedayu and Kalibawang suggests the necessity of incorporating additional predictors such as sanitation conditions and vector control activities.

Conclusions: The GWPR model provides valuable insights into the spatiotemporal dynamics of dengue incidence, emphasizing the role of localized predictors. Spatially adaptive prevention strategies focusing on high-risk areas are essential for effective dengue control in Yogyakarta and similar tropical regions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Medicine and Health
Tropical Medicine and Health TROPICAL MEDICINE-
CiteScore
7.00
自引率
2.20%
发文量
90
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信